Cargando…

Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capaci...

Descripción completa

Detalles Bibliográficos
Autores principales: Shekarforoush, Elhamalsadat, Mendes, Ana C., Baj, Vanessa, Beeren, Sophie R., Chronakis, Ioannis S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151585/
https://www.ncbi.nlm.nih.gov/pubmed/29039789
http://dx.doi.org/10.3390/molecules22101708
Descripción
Sumario:Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). (1)H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.