Cargando…
An Automated Approach for Epilepsy Detection Based on Tunable Q-Wavelet and Firefly Feature Selection Algorithm
Detection of epileptic seizures using an electroencephalogram (EEG) signals is a challenging task that requires a high level of skilled neurophysiologists. Therefore, computer-aided detection provides an asset to the neurophysiologist in interpreting the EEG. This paper introduces a novel approach t...
Autores principales: | Sharaf, Ahmed I., El-Soud, Mohamed Abu, El-Henawy, Ibrahim M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151675/ https://www.ncbi.nlm.nih.gov/pubmed/30275820 http://dx.doi.org/10.1155/2018/5812872 |
Ejemplares similares
-
A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset
por: Bacanin, Nebojsa, et al.
Publicado: (2023) -
Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata
por: Liu, Aiming, et al.
Publicado: (2017) -
Synchronous Firefly Algorithm for Cluster Head Selection in WSN
por: Baskaran, Madhusudhanan, et al.
Publicado: (2015) -
Usages of Spark Framework with Different Machine Learning Algorithms
por: Ali Mohamed, Mohamed, et al.
Publicado: (2021) -
Tunable Q wavelet transform based emotion classification in Parkinson’s disease using Electroencephalography
por: Murugappan, Murugappan, et al.
Publicado: (2020)