Cargando…
Transforming Retinal Photographs to Entropy Images in Deep Learning to Improve Automated Detection for Diabetic Retinopathy
Entropy images, representing the complexity of original fundus photographs, may strengthen the contrast between diabetic retinopathy (DR) lesions and unaffected areas. The aim of this study is to compare the detection performance for severe DR between original fundus photographs and entropy images b...
Autores principales: | Lin, Gen-Min, Chen, Mei-Juan, Yeh, Chia-Hung, Lin, Yu-Yang, Kuo, Heng-Yu, Lin, Min-Hui, Chen, Ming-Chin, Lin, Shinfeng D., Gao, Ying, Ran, Anran, Cheung, Carol Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151683/ https://www.ncbi.nlm.nih.gov/pubmed/30275989 http://dx.doi.org/10.1155/2018/2159702 |
Ejemplares similares
-
Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm
por: Li, Feng, et al.
Publicado: (2019) -
Deep-Learning–Based Pre-Diagnosis Assessment Module for Retinal Photographs: A Multicenter Study
por: Yuen, Vincent, et al.
Publicado: (2021) -
Semi-automated quantification of hard exudates in colour fundus photographs diagnosed with diabetic retinopathy
por: Marupally, Abhilash Goud, et al.
Publicado: (2017) -
Thermal face recognition under different conditions
por: Lin, Shinfeng D., et al.
Publicado: (2021) -
Predicting sex from retinal fundus photographs using automated deep learning
por: Korot, Edward, et al.
Publicado: (2021)