Cargando…

Zeamide, a Glycosylinositol Phosphorylceramide with the Novel Core Arap(1β→6)Ins Motif from the Marine Sponge Svenzea zeai

Glycosylinositol phosphorylceramides (GIPCs) show a great structural diversity, but all share a small number of core structures, with a glucosamine, a mannose, or a glucuronic acid as the first sugar linked to the inositol. The Caribbean sponge Svenzea zeai was shown to consistently contain zeamide...

Descripción completa

Detalles Bibliográficos
Autores principales: Della Sala, Gerardo, Teta, Roberta, Esposito, Germana, Pawlik, Joseph R., Mangoni, Alfonso, Costantino, Valeria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151786/
https://www.ncbi.nlm.nih.gov/pubmed/28862696
http://dx.doi.org/10.3390/molecules22091455
Descripción
Sumario:Glycosylinositol phosphorylceramides (GIPCs) show a great structural diversity, but all share a small number of core structures, with a glucosamine, a mannose, or a glucuronic acid as the first sugar linked to the inositol. The Caribbean sponge Svenzea zeai was shown to consistently contain zeamide (1), the first example of a new class of GIPCs, in which the inositol is glycosylated by a d-arabinose. The structure of zeamide was determined by spectroscopic analysis (NMR, MS, ECD) and microscale chemical degradation. The 6-O-β-d-arabinopyranosyl-myo-inositol (d-Arap(1β→6)Ins) core motif of zeamide is unprecedented not only among GIPCs, but also in any natural glycoconjugate.