Cargando…
An integrated methylation and gene expression microarray analysis reveals significant prognostic biomarkers in oral squamous cell carcinoma
Oral squamous cell carcinoma (OSCC) is a life-threatening disease with a poor prognosis. Although previous studies have reported that the methylation of certain genes is associated with the pathogenesis of OSCC, the methylation of genes that have relevance to OSCC progression is not clearly document...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151890/ https://www.ncbi.nlm.nih.gov/pubmed/30226546 http://dx.doi.org/10.3892/or.2018.6702 |
Sumario: | Oral squamous cell carcinoma (OSCC) is a life-threatening disease with a poor prognosis. Although previous studies have reported that the methylation of certain genes is associated with the pathogenesis of OSCC, the methylation of genes that have relevance to OSCC progression is not clearly documented. The present study aimed to gain insights into the mechanisms underlying DNA methylation regulation associated with OSCC progression and to identify potential prognostic markers for OSCC treatment. DNA methylation dataset GSE41114 and gene expression dataset GSE74530 were downloaded from the Gene Expression Omnibus database. The global methylation status of OSCC tumor samples and normal control samples was determined, and differentially methylated genes (DMGs) in OSCC samples compared with control samples were identified. The mRNA expression data were then integrated to identify differentially expressed genes (DEGs) in OSCC samples compared with control samples. Overlapping genes between DEGs and DMGs were identified, and functional enrichment analysis was performed. In addition, survival analysis of the overlapping genes was performed to screen genes with prognostic significance in OSCC. A total of 40,115 differential methylation CpG sites spanning 3,360 DMGs were identified; CpG sites in the promoter, gene body and intergenic regions were generally highly hypermethylated or hypomethylated. Additionally, 508 DEGs in OSCC samples were identified, including 332 upregulated and 176 downregulated genes. A total of 82 overlapping genes between DEGs and DMGs were found, which were mainly involved in protein metabolism, regulation of the metabolic process and the immune system. Additionally, differential methylation or expression of several genes, including fibroblast activation protein α (FAP), interferon α inducible protein 27 (IFI27), laminin subunit γ2 (LAMC2), matrix metallopeptidase 1 (MMP1), serine peptidase inhibitor Kazal-type 5 (SPINK5) and zinc finger protein 662 (ZNF662), was significantly associated with the survival of OSCC patients, and their differential expression in OSCC patients was further confirmed by reverse transcription-quantitative polymerase chain reaction in OSCC and normal oral cell lines. Overall, FAP, IFI27, LAMC2, MMP1, SPINK5 and ZNF662 genes caused by epigenetic changes via DNA methylation may be associated with the development and progression of OSCC, and should be valuable OSCC therapeutic biomarkers. |
---|