Cargando…
Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile
In this study, we performed the chemical characterization of Myrcia splendens (Sw.) DC. (Myrtaceae) essential oil from Amazonian Ecuador and the assessment of its bioactivity in terms of cytotoxic, antibacterial, and antioxidant activity as starting point for possible applicative uses. M. splendens...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152043/ https://www.ncbi.nlm.nih.gov/pubmed/28704964 http://dx.doi.org/10.3390/molecules22071163 |
_version_ | 1783357282454601728 |
---|---|
author | Scalvenzi, Laura Grandini, Alessandro Spagnoletti, Antonella Tacchini, Massimo Neill, David Ballesteros, José Luis Sacchetti, Gianni Guerrini, Alessandra |
author_facet | Scalvenzi, Laura Grandini, Alessandro Spagnoletti, Antonella Tacchini, Massimo Neill, David Ballesteros, José Luis Sacchetti, Gianni Guerrini, Alessandra |
author_sort | Scalvenzi, Laura |
collection | PubMed |
description | In this study, we performed the chemical characterization of Myrcia splendens (Sw.) DC. (Myrtaceae) essential oil from Amazonian Ecuador and the assessment of its bioactivity in terms of cytotoxic, antibacterial, and antioxidant activity as starting point for possible applicative uses. M. splendens essential oil, obtained by hydro-distillation, was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID): the major components were found to be trans-nerolidol (67.81%) and α-bisabolol (17.51%). Furthermore, we assessed the cytotoxic activity against MCF-7 (breast), A549 (lung) human tumor cell lines, and HaCaT (human keratinocytes) non-tumor cell line through 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test: promising results in terms of selectivity and efficacy against the MCF-7 cell line (IC(50) of 5.59 ± 0.13 μg/mL at 48 h) were obtained, mainly due to α-bisabolol. Furthermore, antibacterial activity against Gram positive and negative bacteria were performed through High Performance Thin Layer Chromatography (HPTLC) bioautographic assay and microdilution method: trans-nerolidol and β-cedren-9-one were the main molecules responsible for the low antibacterial effects against human pathogens. Nevertheless, interesting values of Minimum Inhibitory Concentration (MIC) were noticeable against phytopathogen strains. Radical scavenging activity performed by HPTLC bioautographic and spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) approaches were negligible. In conclusion, the essential oil revealed a good potential for plant defense and anti-cancer applications. |
format | Online Article Text |
id | pubmed-6152043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61520432018-11-13 Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile Scalvenzi, Laura Grandini, Alessandro Spagnoletti, Antonella Tacchini, Massimo Neill, David Ballesteros, José Luis Sacchetti, Gianni Guerrini, Alessandra Molecules Article In this study, we performed the chemical characterization of Myrcia splendens (Sw.) DC. (Myrtaceae) essential oil from Amazonian Ecuador and the assessment of its bioactivity in terms of cytotoxic, antibacterial, and antioxidant activity as starting point for possible applicative uses. M. splendens essential oil, obtained by hydro-distillation, was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID): the major components were found to be trans-nerolidol (67.81%) and α-bisabolol (17.51%). Furthermore, we assessed the cytotoxic activity against MCF-7 (breast), A549 (lung) human tumor cell lines, and HaCaT (human keratinocytes) non-tumor cell line through 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test: promising results in terms of selectivity and efficacy against the MCF-7 cell line (IC(50) of 5.59 ± 0.13 μg/mL at 48 h) were obtained, mainly due to α-bisabolol. Furthermore, antibacterial activity against Gram positive and negative bacteria were performed through High Performance Thin Layer Chromatography (HPTLC) bioautographic assay and microdilution method: trans-nerolidol and β-cedren-9-one were the main molecules responsible for the low antibacterial effects against human pathogens. Nevertheless, interesting values of Minimum Inhibitory Concentration (MIC) were noticeable against phytopathogen strains. Radical scavenging activity performed by HPTLC bioautographic and spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) approaches were negligible. In conclusion, the essential oil revealed a good potential for plant defense and anti-cancer applications. MDPI 2017-07-12 /pmc/articles/PMC6152043/ /pubmed/28704964 http://dx.doi.org/10.3390/molecules22071163 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Scalvenzi, Laura Grandini, Alessandro Spagnoletti, Antonella Tacchini, Massimo Neill, David Ballesteros, José Luis Sacchetti, Gianni Guerrini, Alessandra Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile |
title | Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile |
title_full | Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile |
title_fullStr | Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile |
title_full_unstemmed | Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile |
title_short | Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (Myrtaceae) Essential Oil from Amazonian Ecuador: A Chemical Characterization and Bioactivity Profile |
title_sort | myrcia splendens (sw.) dc. (syn. m. fallax (rich.) dc.) (myrtaceae) essential oil from amazonian ecuador: a chemical characterization and bioactivity profile |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152043/ https://www.ncbi.nlm.nih.gov/pubmed/28704964 http://dx.doi.org/10.3390/molecules22071163 |
work_keys_str_mv | AT scalvenzilaura myrciasplendensswdcsynmfallaxrichdcmyrtaceaeessentialoilfromamazonianecuadorachemicalcharacterizationandbioactivityprofile AT grandinialessandro myrciasplendensswdcsynmfallaxrichdcmyrtaceaeessentialoilfromamazonianecuadorachemicalcharacterizationandbioactivityprofile AT spagnolettiantonella myrciasplendensswdcsynmfallaxrichdcmyrtaceaeessentialoilfromamazonianecuadorachemicalcharacterizationandbioactivityprofile AT tacchinimassimo myrciasplendensswdcsynmfallaxrichdcmyrtaceaeessentialoilfromamazonianecuadorachemicalcharacterizationandbioactivityprofile AT neilldavid myrciasplendensswdcsynmfallaxrichdcmyrtaceaeessentialoilfromamazonianecuadorachemicalcharacterizationandbioactivityprofile AT ballesterosjoseluis myrciasplendensswdcsynmfallaxrichdcmyrtaceaeessentialoilfromamazonianecuadorachemicalcharacterizationandbioactivityprofile AT sacchettigianni myrciasplendensswdcsynmfallaxrichdcmyrtaceaeessentialoilfromamazonianecuadorachemicalcharacterizationandbioactivityprofile AT guerrinialessandra myrciasplendensswdcsynmfallaxrichdcmyrtaceaeessentialoilfromamazonianecuadorachemicalcharacterizationandbioactivityprofile |