Cargando…

Bioactive Constituents from the Whole Plants of Gentianella acuta (Michx.) Hulten

As a Mongolian native medicine and Ewenki folk medicinal plant, Gentianella acuta has been widely used for the treatment of diarrhea, hepatitis, arrhythmia, and coronary heart disease. In the course of investigating efficacy compounds to treat diarrhea using a mouse isolated intestine tissue model,...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Zhijuan, Liu, Yanxia, Ruan, Jingya, Yang, Shengcai, Yu, Haiyang, Chen, Meiling, Zhang, Yi, Wang, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152096/
https://www.ncbi.nlm.nih.gov/pubmed/28783086
http://dx.doi.org/10.3390/molecules22081309
Descripción
Sumario:As a Mongolian native medicine and Ewenki folk medicinal plant, Gentianella acuta has been widely used for the treatment of diarrhea, hepatitis, arrhythmia, and coronary heart disease. In the course of investigating efficacy compounds to treat diarrhea using a mouse isolated intestine tissue model, we found 70% EtOH extract of G. acuta whole plants had an inhibitory effect on intestine contraction tension. Here, nineteen constituents, including five new compounds, named as gentiiridosides A (1), B (2), gentilignanoside A (3), (1R)-2,2,3-trimethyl-4-hydroxymethylcyclopent-3-ene-1-methyl-O-β-d-glucopyranoside (4), and (3Z)-3-hexene-1,5-diol 1-O-α-l-arabinopyranosyl(1→6)-β-d-glucopyranoside (5) were obtained from it. The structures of them were elucidated by chemical and spectroscopic methods. Furthermore, the inhibitory effects on motility of mouse isolated intestine tissue of the above mentioned compounds and other thirteen iridoid- and secoiridoid-type monoterpenes (7–10, 13–16, 18, 19, 21, 22, and 25) previously obtained in the plant were analyzed. As results, new compound 5, some secoiridoid-type monoterpenes 7, 10, 12–14, 16, and 17, as well as 7-O-9′-type lignans 31 and 32 displayed significant inhibitory effect on contraction tension at 40 μM.