Cargando…
Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus
Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152273/ https://www.ncbi.nlm.nih.gov/pubmed/28771188 http://dx.doi.org/10.3390/molecules22081292 |
_version_ | 1783357332482162688 |
---|---|
author | Wang, Minqian Firrman, Jenni Zhang, Liqing Arango-Argoty, Gustavo Tomasula, Peggy Liu, LinShu Xiao, Weidong Yam, Kit |
author_facet | Wang, Minqian Firrman, Jenni Zhang, Liqing Arango-Argoty, Gustavo Tomasula, Peggy Liu, LinShu Xiao, Weidong Yam, Kit |
author_sort | Wang, Minqian |
collection | PubMed |
description | Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae. |
format | Online Article Text |
id | pubmed-6152273 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61522732018-11-13 Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus Wang, Minqian Firrman, Jenni Zhang, Liqing Arango-Argoty, Gustavo Tomasula, Peggy Liu, LinShu Xiao, Weidong Yam, Kit Molecules Article Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae. MDPI 2017-08-03 /pmc/articles/PMC6152273/ /pubmed/28771188 http://dx.doi.org/10.3390/molecules22081292 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Minqian Firrman, Jenni Zhang, Liqing Arango-Argoty, Gustavo Tomasula, Peggy Liu, LinShu Xiao, Weidong Yam, Kit Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus |
title | Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus |
title_full | Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus |
title_fullStr | Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus |
title_full_unstemmed | Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus |
title_short | Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus |
title_sort | apigenin impacts the growth of the gut microbiota and alters the gene expression of enterococcus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152273/ https://www.ncbi.nlm.nih.gov/pubmed/28771188 http://dx.doi.org/10.3390/molecules22081292 |
work_keys_str_mv | AT wangminqian apigeninimpactsthegrowthofthegutmicrobiotaandaltersthegeneexpressionofenterococcus AT firrmanjenni apigeninimpactsthegrowthofthegutmicrobiotaandaltersthegeneexpressionofenterococcus AT zhangliqing apigeninimpactsthegrowthofthegutmicrobiotaandaltersthegeneexpressionofenterococcus AT arangoargotygustavo apigeninimpactsthegrowthofthegutmicrobiotaandaltersthegeneexpressionofenterococcus AT tomasulapeggy apigeninimpactsthegrowthofthegutmicrobiotaandaltersthegeneexpressionofenterococcus AT liulinshu apigeninimpactsthegrowthofthegutmicrobiotaandaltersthegeneexpressionofenterococcus AT xiaoweidong apigeninimpactsthegrowthofthegutmicrobiotaandaltersthegeneexpressionofenterococcus AT yamkit apigeninimpactsthegrowthofthegutmicrobiotaandaltersthegeneexpressionofenterococcus |