Cargando…
Efficient Dye-Sensitized Solar Cells Based on Nanoflower-like ZnO Photoelectrode
A photoanode material ZnO nanoflower (ZNFs) for efficient dye-sensitized solar cell (DSSC) was prepared. This unique structure can significantly increase the specific surface area and amount of light absorption, leading to a higher short-circuit current density. Furthermore, ZNFs resulted in closer...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152386/ https://www.ncbi.nlm.nih.gov/pubmed/28771163 http://dx.doi.org/10.3390/molecules22081284 |
Sumario: | A photoanode material ZnO nanoflower (ZNFs) for efficient dye-sensitized solar cell (DSSC) was prepared. This unique structure can significantly increase the specific surface area and amount of light absorption, leading to a higher short-circuit current density. Furthermore, ZNFs resulted in closer spacing between the nanorods and more direct conduction paths for electrons, leading to higher open-circuit voltage. The overall promising power conversion efficiency of 5.96% was obtained with photoanodes of 8.5 μm thickness. This work shows that ZNFs is an attractive material and has good potential for application in high efficiency ZnO-based DSSCs. |
---|