Cargando…

Sesquiterpene Variation in West Australian Sandalwood (Santalum spicatum)

West Australian sandalwood (Santalum spicatum) has long been exploited for its fragrant, sesquiterpene-rich heartwood; however sandalwood fragrance qualities vary substantially, which is of interest to the sandalwood industry. We investigated metabolite profiles of trees from the arid northern and s...

Descripción completa

Detalles Bibliográficos
Autores principales: Moniodis, Jessie, Jones, Christopher G., Renton, Michael, Plummer, Julie A., Barbour, E. Liz, Ghisalberti, Emilio L., Bohlmann, Joerg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152738/
https://www.ncbi.nlm.nih.gov/pubmed/28587294
http://dx.doi.org/10.3390/molecules22060940
Descripción
Sumario:West Australian sandalwood (Santalum spicatum) has long been exploited for its fragrant, sesquiterpene-rich heartwood; however sandalwood fragrance qualities vary substantially, which is of interest to the sandalwood industry. We investigated metabolite profiles of trees from the arid northern and southeastern and semi-arid southwestern regions of West Australia for patterns in composition and co-occurrence of sesquiterpenes. Total sesquiterpene content was similar across the entire sample collection; however sesquiterpene composition was highly variable. Northern populations contained the highest levels of desirable fragrance compounds, α- and β-santalol, as did individuals from the southwest. Southeastern populations were higher in E,E-farnesol, an undesired allergenic constituent, and low in santalols. These trees generally also contained higher levels of α-bisabolol. E,E-farnesol co-occurred with dendrolasin. Contrasting α-santalol and E,E-farnesol chemotypes revealed potential for future genetic tree improvement. Although chemical variation was evident both within and among regions, variation was generally lower within regions. Our results showed distinct patterns in chemical diversity of S. spicatum across its natural distribution, consistent with earlier investigations into sandalwood population genetics. These results are relevant for plantation tree improvement and conservation efforts.