Cargando…
Isoprenoids Production from Lipid-Extracted Microalgal Biomass Residues Using Engineered E. coli
Microalgae are recognized as a third generation feedstock for biofuel production due to their rapid growth rates and lignin-free characteristics. In this study, a lipid extracted microalgal biomass residues was used as the raw material to produce isoprene, α-pinene and β-pinene with an engineered E....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152769/ https://www.ncbi.nlm.nih.gov/pubmed/28598364 http://dx.doi.org/10.3390/molecules22060960 |
Sumario: | Microalgae are recognized as a third generation feedstock for biofuel production due to their rapid growth rates and lignin-free characteristics. In this study, a lipid extracted microalgal biomass residues was used as the raw material to produce isoprene, α-pinene and β-pinene with an engineered E. coli strain. We adopted an optimal sulfuric acid hydrolysis method (1:7 ratio of solid to acid solution, 32% (w/v) concentration of sulfuric acid solution at 90 °C for 90 min) to efficiently convert holocellulose into glucose efficiently (6.37 g/L). Futhermore, we explored a novel detoxification strategy (phosphoric acid/calcium hydroxide) to remove inhibitors and notably acetic acid, furfural and 5-hydroxymethylfurfural (5-HMF) were reduced by 5.32%, different number given later 99.19% and 98.22%, respectively. Finally, the fermentation concentrations of isoprene (223.23 mg/L), α-pinene (382.21 μg/L) and β-pinene (17.4 mg/L) were achieved using the detoxified hydrolysate as the carbon source, equivalent to approximately 86.02%, 90.16% and 88.32% of those produced by the engineered E. coli strain fermented on pure glucose, respectively. |
---|