Cargando…
Improving the Accuracy, Quality, and Signal-To-Noise Ratio of MRI Parametric Mapping Using Rician Bias Correction and Parametric-Contrast-Matched Principal Component Analysis (PCM-PCA)
MRI parametric mapping, including T2 mapping, can quantitatively characterize tissue properties and is an important MRI procedure in biomedical research and studies of diseases [1-3]. However, the accuracy, quality, and signal-to-noise ratio (SNR) of MRI parametric mapping may be negatively impacted...
Autores principales: | Sonderer, Christa M., Chen, Nan-kuei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
YJBM
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153621/ https://www.ncbi.nlm.nih.gov/pubmed/30258307 |
Ejemplares similares
-
Parametric and non-parametric gradient matching for network inference: a comparison
por: Dony, Leander, et al.
Publicado: (2019) -
Parametric Optimization of a Truncated Conical Metal Hydride Bed Surrounded by a Ring of PCM for Heat Recovery
por: Mellouli, Sofiene, et al.
Publicado: (2023) -
A spatially variant high-order variational model for Rician noise removal
por: Phan, Tran Dang Khoa
Publicado: (2023) -
Bayesian Rician Regression for Neuroimaging
por: Wegmann, Bertil, et al.
Publicado: (2017) -
RF Noise Driven Dipole Mode Parametric Resonance
por: Kim, Y, et al.
Publicado: (2001)