Cargando…
Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies
BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce statistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of missing values and strategies to handle these data has received li...
Autores principales: | Do, Kieu Trinh, Wahl, Simone, Raffler, Johannes, Molnos, Sophie, Laimighofer, Michael, Adamski, Jerzy, Suhre, Karsten, Strauch, Konstantin, Peters, Annette, Gieger, Christian, Langenberg, Claudia, Stewart, Isobel D., Theis, Fabian J., Grallert, Harald, Kastenmüller, Gabi, Krumsiek, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153696/ https://www.ncbi.nlm.nih.gov/pubmed/30830398 http://dx.doi.org/10.1007/s11306-018-1420-2 |
Ejemplares similares
-
A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
por: Faquih, Tariq, et al.
Publicado: (2020) -
pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms
por: Molnos, Sophie, et al.
Publicado: (2017) -
Genetics of human metabolism: an update
por: Kastenmüller, Gabi, et al.
Publicado: (2015) -
The prevention and handling of the missing data
por: Kang, Hyun
Publicado: (2013) -
MoDentify: phenotype-driven module identification in metabolomics networks at different resolutions
por: Do, Kieu Trinh, et al.
Publicado: (2019)