Cargando…
Local convergence of the boundary element method on polyhedral domains
The local behavior of the lowest order boundary element method on quasi-uniform meshes for Symm’s integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in [Formula: see text] for Symm’s integral...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154049/ https://www.ncbi.nlm.nih.gov/pubmed/30319152 http://dx.doi.org/10.1007/s00211-018-0975-1 |
_version_ | 1783357623329882112 |
---|---|
author | Faustmann, Markus Melenk, Jens Markus |
author_facet | Faustmann, Markus Melenk, Jens Markus |
author_sort | Faustmann, Markus |
collection | PubMed |
description | The local behavior of the lowest order boundary element method on quasi-uniform meshes for Symm’s integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in [Formula: see text] for Symm’s integral equation and in [Formula: see text] for the hyper-singular equation. The local rate of convergence is limited by the local regularity of the sought solution and the sum of the rates given by the global regularity and additional regularity provided by the shift theorem for a dual problem. |
format | Online Article Text |
id | pubmed-6154049 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-61540492018-10-10 Local convergence of the boundary element method on polyhedral domains Faustmann, Markus Melenk, Jens Markus Numer Math (Heidelb) Article The local behavior of the lowest order boundary element method on quasi-uniform meshes for Symm’s integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in [Formula: see text] for Symm’s integral equation and in [Formula: see text] for the hyper-singular equation. The local rate of convergence is limited by the local regularity of the sought solution and the sum of the rates given by the global regularity and additional regularity provided by the shift theorem for a dual problem. Springer Berlin Heidelberg 2018-06-29 2018 /pmc/articles/PMC6154049/ /pubmed/30319152 http://dx.doi.org/10.1007/s00211-018-0975-1 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Faustmann, Markus Melenk, Jens Markus Local convergence of the boundary element method on polyhedral domains |
title | Local convergence of the boundary element method on polyhedral domains |
title_full | Local convergence of the boundary element method on polyhedral domains |
title_fullStr | Local convergence of the boundary element method on polyhedral domains |
title_full_unstemmed | Local convergence of the boundary element method on polyhedral domains |
title_short | Local convergence of the boundary element method on polyhedral domains |
title_sort | local convergence of the boundary element method on polyhedral domains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154049/ https://www.ncbi.nlm.nih.gov/pubmed/30319152 http://dx.doi.org/10.1007/s00211-018-0975-1 |
work_keys_str_mv | AT faustmannmarkus localconvergenceoftheboundaryelementmethodonpolyhedraldomains AT melenkjensmarkus localconvergenceoftheboundaryelementmethodonpolyhedraldomains |