Cargando…

Local convergence of the boundary element method on polyhedral domains

The local behavior of the lowest order boundary element method on quasi-uniform meshes for Symm’s integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in [Formula: see text] for Symm’s integral...

Descripción completa

Detalles Bibliográficos
Autores principales: Faustmann, Markus, Melenk, Jens Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154049/
https://www.ncbi.nlm.nih.gov/pubmed/30319152
http://dx.doi.org/10.1007/s00211-018-0975-1
_version_ 1783357623329882112
author Faustmann, Markus
Melenk, Jens Markus
author_facet Faustmann, Markus
Melenk, Jens Markus
author_sort Faustmann, Markus
collection PubMed
description The local behavior of the lowest order boundary element method on quasi-uniform meshes for Symm’s integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in [Formula: see text] for Symm’s integral equation and in [Formula: see text] for the hyper-singular equation. The local rate of convergence is limited by the local regularity of the sought solution and the sum of the rates given by the global regularity and additional regularity provided by the shift theorem for a dual problem.
format Online
Article
Text
id pubmed-6154049
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-61540492018-10-10 Local convergence of the boundary element method on polyhedral domains Faustmann, Markus Melenk, Jens Markus Numer Math (Heidelb) Article The local behavior of the lowest order boundary element method on quasi-uniform meshes for Symm’s integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in [Formula: see text] for Symm’s integral equation and in [Formula: see text] for the hyper-singular equation. The local rate of convergence is limited by the local regularity of the sought solution and the sum of the rates given by the global regularity and additional regularity provided by the shift theorem for a dual problem. Springer Berlin Heidelberg 2018-06-29 2018 /pmc/articles/PMC6154049/ /pubmed/30319152 http://dx.doi.org/10.1007/s00211-018-0975-1 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Faustmann, Markus
Melenk, Jens Markus
Local convergence of the boundary element method on polyhedral domains
title Local convergence of the boundary element method on polyhedral domains
title_full Local convergence of the boundary element method on polyhedral domains
title_fullStr Local convergence of the boundary element method on polyhedral domains
title_full_unstemmed Local convergence of the boundary element method on polyhedral domains
title_short Local convergence of the boundary element method on polyhedral domains
title_sort local convergence of the boundary element method on polyhedral domains
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154049/
https://www.ncbi.nlm.nih.gov/pubmed/30319152
http://dx.doi.org/10.1007/s00211-018-0975-1
work_keys_str_mv AT faustmannmarkus localconvergenceoftheboundaryelementmethodonpolyhedraldomains
AT melenkjensmarkus localconvergenceoftheboundaryelementmethodonpolyhedraldomains