Cargando…
Local convergence of the boundary element method on polyhedral domains
The local behavior of the lowest order boundary element method on quasi-uniform meshes for Symm’s integral equation and the stabilized hyper-singular integral equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in [Formula: see text] for Symm’s integral...
Autores principales: | Faustmann, Markus, Melenk, Jens Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154049/ https://www.ncbi.nlm.nih.gov/pubmed/30319152 http://dx.doi.org/10.1007/s00211-018-0975-1 |
Ejemplares similares
Cargando…
The boundary element method for plate analysis
por: Katsikadelis, John T
Publicado: (2014)
por: Katsikadelis, John T
Publicado: (2014)
Ejemplares similares
-
Approximating inverse FEM matrices on non-uniform meshes with [Formula: see text] -matrices
por: Angleitner, Niklas, et al.
Publicado: (2021) -
Runge–Kutta approximation for [Formula: see text] -semigroups in the graph norm with applications to time domain boundary integral equations
por: Rieder, Alexander, et al.
Publicado: (2020) -
hp-finite element methods for singular perturbations
por: Melenk, Jens M
Publicado: (2002) -
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations
por: Feischl, Michael, et al.
Publicado: (2016) -
Polyhedral and algebraic methods in computational geometry
por: Joswig, Michael, et al.
Publicado: (2013)