Cargando…
Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces
Inspired by the work of Zegeye (J. Math. Anal. Appl. 343:663–671, 2008) and the recent papers of Chidume et al. (Fixed Point Theory Appl. 2016:97, 2016; Br. J. Math. Comput. Sci. 18:1–14, 2016), we devise a viscosity iterative algorithm without involving the resolvent operator for approximating the...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154085/ https://www.ncbi.nlm.nih.gov/pubmed/30839705 http://dx.doi.org/10.1186/s13660-018-1845-1 |
Sumario: | Inspired by the work of Zegeye (J. Math. Anal. Appl. 343:663–671, 2008) and the recent papers of Chidume et al. (Fixed Point Theory Appl. 2016:97, 2016; Br. J. Math. Comput. Sci. 18:1–14, 2016), we devise a viscosity iterative algorithm without involving the resolvent operator for approximating the zero of a monotone mapping in the setting of uniformly convex Banach spaces. Under concise parameter conditions we establish strong convergence of the proposed algorithm. Moreover, applications to constrained convex minimization problems and solution of Hammerstein integral equations are included. Finally, the performances and computational examples and a comparison with related algorithms are presented to illustrate the efficiency and applicability of our new algorithm. |
---|