Cargando…

Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces

Inspired by the work of Zegeye (J. Math. Anal. Appl. 343:663–671, 2008) and the recent papers of Chidume et al. (Fixed Point Theory Appl. 2016:97, 2016; Br. J. Math. Comput. Sci. 18:1–14, 2016), we devise a viscosity iterative algorithm without involving the resolvent operator for approximating the...

Descripción completa

Detalles Bibliográficos
Autor principal: Tang, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154085/
https://www.ncbi.nlm.nih.gov/pubmed/30839705
http://dx.doi.org/10.1186/s13660-018-1845-1
_version_ 1783357631741558784
author Tang, Yan
author_facet Tang, Yan
author_sort Tang, Yan
collection PubMed
description Inspired by the work of Zegeye (J. Math. Anal. Appl. 343:663–671, 2008) and the recent papers of Chidume et al. (Fixed Point Theory Appl. 2016:97, 2016; Br. J. Math. Comput. Sci. 18:1–14, 2016), we devise a viscosity iterative algorithm without involving the resolvent operator for approximating the zero of a monotone mapping in the setting of uniformly convex Banach spaces. Under concise parameter conditions we establish strong convergence of the proposed algorithm. Moreover, applications to constrained convex minimization problems and solution of Hammerstein integral equations are included. Finally, the performances and computational examples and a comparison with related algorithms are presented to illustrate the efficiency and applicability of our new algorithm.
format Online
Article
Text
id pubmed-6154085
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-61540852018-10-10 Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces Tang, Yan J Inequal Appl Research Inspired by the work of Zegeye (J. Math. Anal. Appl. 343:663–671, 2008) and the recent papers of Chidume et al. (Fixed Point Theory Appl. 2016:97, 2016; Br. J. Math. Comput. Sci. 18:1–14, 2016), we devise a viscosity iterative algorithm without involving the resolvent operator for approximating the zero of a monotone mapping in the setting of uniformly convex Banach spaces. Under concise parameter conditions we establish strong convergence of the proposed algorithm. Moreover, applications to constrained convex minimization problems and solution of Hammerstein integral equations are included. Finally, the performances and computational examples and a comparison with related algorithms are presented to illustrate the efficiency and applicability of our new algorithm. Springer International Publishing 2018-09-21 2018 /pmc/articles/PMC6154085/ /pubmed/30839705 http://dx.doi.org/10.1186/s13660-018-1845-1 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Tang, Yan
Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces
title Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces
title_full Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces
title_fullStr Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces
title_full_unstemmed Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces
title_short Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces
title_sort viscosity iterative algorithm for the zero point of monotone mappings in banach spaces
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154085/
https://www.ncbi.nlm.nih.gov/pubmed/30839705
http://dx.doi.org/10.1186/s13660-018-1845-1
work_keys_str_mv AT tangyan viscosityiterativealgorithmforthezeropointofmonotonemappingsinbanachspaces