Cargando…

Hybrid proximal linearized algorithm for the split DC program in infinite-dimensional real Hilbert spaces

To be the best of our knowledge, the convergence theorem for the DC program and split DC program are proposed in finite-dimensional real Hilbert spaces or Euclidean spaces. In this paper, to study the split DC program, we give a hybrid proximal linearized algorithm and propose related convergence th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chuang, Chih-Sheng, Yang, Pei-Jung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154089/
https://www.ncbi.nlm.nih.gov/pubmed/30839697
http://dx.doi.org/10.1186/s13660-018-1840-6
_version_ 1783357632676888576
author Chuang, Chih-Sheng
Yang, Pei-Jung
author_facet Chuang, Chih-Sheng
Yang, Pei-Jung
author_sort Chuang, Chih-Sheng
collection PubMed
description To be the best of our knowledge, the convergence theorem for the DC program and split DC program are proposed in finite-dimensional real Hilbert spaces or Euclidean spaces. In this paper, to study the split DC program, we give a hybrid proximal linearized algorithm and propose related convergence theorems in the settings of finite- and infinite-dimensional real Hilbert spaces, respectively.
format Online
Article
Text
id pubmed-6154089
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-61540892018-10-10 Hybrid proximal linearized algorithm for the split DC program in infinite-dimensional real Hilbert spaces Chuang, Chih-Sheng Yang, Pei-Jung J Inequal Appl Research To be the best of our knowledge, the convergence theorem for the DC program and split DC program are proposed in finite-dimensional real Hilbert spaces or Euclidean spaces. In this paper, to study the split DC program, we give a hybrid proximal linearized algorithm and propose related convergence theorems in the settings of finite- and infinite-dimensional real Hilbert spaces, respectively. Springer International Publishing 2018-09-21 2018 /pmc/articles/PMC6154089/ /pubmed/30839697 http://dx.doi.org/10.1186/s13660-018-1840-6 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Chuang, Chih-Sheng
Yang, Pei-Jung
Hybrid proximal linearized algorithm for the split DC program in infinite-dimensional real Hilbert spaces
title Hybrid proximal linearized algorithm for the split DC program in infinite-dimensional real Hilbert spaces
title_full Hybrid proximal linearized algorithm for the split DC program in infinite-dimensional real Hilbert spaces
title_fullStr Hybrid proximal linearized algorithm for the split DC program in infinite-dimensional real Hilbert spaces
title_full_unstemmed Hybrid proximal linearized algorithm for the split DC program in infinite-dimensional real Hilbert spaces
title_short Hybrid proximal linearized algorithm for the split DC program in infinite-dimensional real Hilbert spaces
title_sort hybrid proximal linearized algorithm for the split dc program in infinite-dimensional real hilbert spaces
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154089/
https://www.ncbi.nlm.nih.gov/pubmed/30839697
http://dx.doi.org/10.1186/s13660-018-1840-6
work_keys_str_mv AT chuangchihsheng hybridproximallinearizedalgorithmforthesplitdcprogramininfinitedimensionalrealhilbertspaces
AT yangpeijung hybridproximallinearizedalgorithmforthesplitdcprogramininfinitedimensionalrealhilbertspaces