Cargando…
An Increased Understanding of Enolate Additions under Mechanochemical Conditions
Very little is known about enolate addition chemistry under solver-free mechanochemical conditions. In this report, we investigated the ability to selectively form products arising from the primary, secondary, and tertiary enolates under solvent-free conditions. Using potassium tert-butoxide as the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154340/ https://www.ncbi.nlm.nih.gov/pubmed/28448450 http://dx.doi.org/10.3390/molecules22050696 |
Sumario: | Very little is known about enolate addition chemistry under solver-free mechanochemical conditions. In this report, we investigated the ability to selectively form products arising from the primary, secondary, and tertiary enolates under solvent-free conditions. Using potassium tert-butoxide as the base and primary, secondary, and tertiary electrophiles, we were able to generate various enolate addition products including, 1,3,3,3-tetraphenyl-2,2-dimethyl-1-propanone; a molecule we did not observe under traditional solution-based conditions. |
---|