Cargando…
Distinction between phyllodes tumor and fibroadenoma in breast ultrasound using deep learning image analysis
PURPOSE: To evaluate the accuracy of a deep learning software (DLS) in the discrimination between phyllodes tumors (PT) and fibroadenomas (FA). METHODS: In this IRB-approved, retrospective, single-center study, we collected all ultrasound images of histologically secured PT (n = 11, 36 images) and a...
Autores principales: | Stoffel, Elina, Becker, Anton S., Wurnig, Moritz C., Marcon, Magda, Ghafoor, Soleen, Berger, Nicole, Boss, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154513/ https://www.ncbi.nlm.nih.gov/pubmed/30258856 http://dx.doi.org/10.1016/j.ejro.2018.09.002 |
Ejemplares similares
-
MRI texture features may predict differentiation and nodal stage of cervical cancer: a pilot study
por: Becker, Anton S, et al.
Publicado: (2017) -
Distinction of phyllodes tumor from fibroadenoma: Cytologists’ perspective
por: Bandyopadhyay, Ranjana, et al.
Publicado: (2010) -
Diagnostic performance of machine learning applied to texture analysis-derived features for breast lesion characterisation at automated breast ultrasound: a pilot study
por: Marcon, Magda, et al.
Publicado: (2019) -
Differentiation between Phyllodes Tumors and Fibroadenomas through Breast Ultrasound: Deep-Learning Model Outperforms Ultrasound Physicians
por: Shi, Zhaoting, et al.
Publicado: (2023) -
Assessment of Cervical Cancer with a Parameter-Free Intravoxel Incoherent Motion Imaging Algorithm
por: Becker, Anton S., et al.
Publicado: (2017)