Cargando…
Novel Palladium(II) Complexes that Influence Prominin-1/CD133 Expression and Stem Cell Factor Release in Tumor Cells
New Pd(II) complexes of 1,7-bis(2-methoxyphenyl)hepta-1,6-diene-3,5-dione were synthesized and structurally characterized. The complexes were tested in vitro on human colon and hepatic carcinoma cell lines, normal hepatic cells and hematopoietic progenitor cells. Biological tests proved that Pd(II)...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154565/ https://www.ncbi.nlm.nih.gov/pubmed/28358339 http://dx.doi.org/10.3390/molecules22040561 |
Sumario: | New Pd(II) complexes of 1,7-bis(2-methoxyphenyl)hepta-1,6-diene-3,5-dione were synthesized and structurally characterized. The complexes were tested in vitro on human colon and hepatic carcinoma cell lines, normal hepatic cells and hematopoietic progenitor cells. Biological tests proved that Pd(II) complexes 1 and 2 (containing a curcumin derivative) exhibit a strong in vitro antitumor effect against the cells derived from human colorectal carcinoma and the hepatic metastasis of a colorectal carcinoma. Complex 1 has an outstanding inhibitory effect against BRAF-mutant colon carcinoma and hepatocarcinoma cell growth; 1 and 2 are both more active than the free ligand and have the capacity to trigger early apoptotic processes. By flow cytometric measurements, an important decrease of prominin-1 (CD133) molecule expression on tumor cells membrane was identified in cell populations subjected to 1 and 2. Quantitative immune enzymatic assay proved restrictions in stem cell factor (SCF) release by treated tumor cells. Although less cytotoxic, the free ligand inhibits the surface marker CD133 expression in hepatocarcinoma cells, and in HT-29 colon carcinoma. The new synthesized Pd(II) complexes 1 and 2 exhibit an important potential through their selective cytotoxic activity and by targeting the stem-like tumor cell populations, which leads to the tumor growth arrest and prevention of metastasis. |
---|