Cargando…
Roles of Glycoproteins in the Diagnosis and Differential Diagnosis of Chronic and Latent Keshan Disease
We aimed to explore the roles of glycoproteins in the pathogenesis of chronic and latent Keshan disease (CKD and LKD), and screen the lectins as indicators of significant differences in glycoproteins of KD saliva and serum. Blood and saliva were collected from 50 CKD, 50 LKD patients and 54 normal i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154689/ https://www.ncbi.nlm.nih.gov/pubmed/28481304 http://dx.doi.org/10.3390/molecules22050746 |
Sumario: | We aimed to explore the roles of glycoproteins in the pathogenesis of chronic and latent Keshan disease (CKD and LKD), and screen the lectins as indicators of significant differences in glycoproteins of KD saliva and serum. Blood and saliva were collected from 50 CKD, 50 LKD patients and 54 normal individuals. Saliva and serum lectin microarrays and saliva and serum microarrays were used to screen and verify the differences in the levels of lectin among the three groups. In the male saliva lectin microarray, Solanum tuberosum (potato) lectin (STL) and other 9 lectins showed differences between CKD and normal; STL and other 9 lectins showed differences between LKD and normal; Aleuria aurantia lectin (AAL) and other 15 lectins showed differences between CKD and LKD. In the female saliva microarray, Griffonia (Bandeiraea) simplicifolia lectin I (GSL-I) and other 9 lectins showed differences between CKD and normal; STL and other 7 lectins showed differences between LKD and normal; Maackia amurensis lectin I (MAL-I) and Triticum vulgaris (WGA) showed difference between CKD and LKD. In the male serum lectin microarray, Psophocarpus tetragonolobus lectin I (PTL-I) and other 16 lectins showed differences between CKD and normal; Ulexeuropaeus agglutinin I (UEA-I) and other 9 lectins showed differences between LKD and normal; AAL and other 13 lectins showed differences between CKD and LKD. In the female serum lectin microarray, WGA and other 13 lectins showed differences between CKD and normal; Euonymus europaeus lectin (EEL) and other 6 lectins showed differences between LKD and normal; MAL-I and other 14 lectins showed differences between CKD and LKD. Carbohydrate chain GlcNAc and α-Gal may play crucial roles in the pathogenesis of KD. STL may be considered the diagnostic biomarker for male CKD and LKD, while WGA may be useful in distinguishing between the two stages. STL may be considered the diagnostic biomarker for female LKD. |
---|