Cargando…
Forward models demonstrate that repetition suppression is best modelled by local neural scaling
Inferring neural mechanisms from functional magnetic resonance imaging (fMRI) is challenging because the fMRI signal integrates over millions of neurons. One approach is to compare computational models that map neural activity to fMRI responses, to see which best predicts fMRI data. We use this appr...
Autores principales: | Alink, Arjen, Abdulrahman, Hunar, Henson, Richard N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154964/ https://www.ncbi.nlm.nih.gov/pubmed/30242150 http://dx.doi.org/10.1038/s41467-018-05957-0 |
Ejemplares similares
-
Reply to ‘Forward models of repetition suppression depend critically on assumptions of noise and granularity’
por: Alink, Arjen, et al.
Publicado: (2020) -
Neural Differentiation of Incorrectly Predicted Memories
por: Greve, Andrea, et al.
Publicado: (2018) -
Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis
por: Abdulrahman, Hunar, et al.
Publicado: (2016) -
Forward models of repetition suppression depend critically on assumptions of noise and granularity
por: Ramírez, Fernando M., et al.
Publicado: (2020) -
Multimodal Integration of M/EEG and f/MRI Data in SPM12
por: Henson, Richard N., et al.
Publicado: (2019)