Cargando…
Flexible Learning-Free Segmentation and Reconstruction of Neural Volumes
Imaging is a dominant strategy for data collection in neuroscience, yielding stacks of images that often scale to gigabytes of data for a single experiment. Machine learning algorithms from computer vision can serve as a pair of virtual eyes that tirelessly processes these images, automatically dete...
Autores principales: | Shahbazi, Ali, Kinnison, Jeffery, Vescovi, Rafael, Du, Ming, Hill, Robert, Joesch, Maximilian, Takeno, Marc, Zeng, Hongkui, da Costa, Nuno Maçarico, Grutzendler, Jaime, Kasthuri, Narayanan, Scheirer, Walter J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155135/ https://www.ncbi.nlm.nih.gov/pubmed/30250218 http://dx.doi.org/10.1038/s41598-018-32628-3 |
Ejemplares similares
-
Publisher Correction: Flexible Learning-Free Segmentation and Reconstruction of Neural Volumes
por: Shahbazi, Ali, et al.
Publicado: (2018) -
Reconstruction of genetically identified neurons imaged by serial-section electron microscopy
por: Joesch, Maximilian, et al.
Publicado: (2016) -
Particle segmentation algorithm for flexible single particle reconstruction
por: Zhou, Qiang, et al.
Publicado: (2017) -
Label-free in vivo imaging of myelinated axons in
health and disease with spectral confocal reflectance microscopy
por: Schain, Aaron J., et al.
Publicado: (2014) -
Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain
por: Hill, Robert A., et al.
Publicado: (2018)