Cargando…

Simple separation of good quality bovine oocytes using a microfluidic device

We fabricated a simple microfluidic device for separation of bovine oocytes based on the oocyte quality to improve the conception rate of in vitro fertilization (IVF) by using good quality oocytes. The microfluidic device separates oocytes based on sedimentation rate differences in a sucrose buffer,...

Descripción completa

Detalles Bibliográficos
Autores principales: Iwasaki, Wataru, Yamanaka, Kenichi, Sugiyama, Daisuke, Teshima, Yuki, Briones-Nagata, Maria Portia, Maeki, Masatoshi, Yamashita, Kenichi, Takahashi, Masashi, Miyazaki, Masaya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155318/
https://www.ncbi.nlm.nih.gov/pubmed/30250059
http://dx.doi.org/10.1038/s41598-018-32687-6
Descripción
Sumario:We fabricated a simple microfluidic device for separation of bovine oocytes based on the oocyte quality to improve the conception rate of in vitro fertilization (IVF) by using good quality oocytes. The microfluidic device separates oocytes based on sedimentation rate differences in a sucrose buffer, which is dependent on oocyte quality. The microfluidic device has a 700 µm width, 1 mm height, and 10 mm long separation channel. Oocytes were injected from the upper half of the separation channel, and they flowed while sinking. The outlets of the separation channel were divided into upper and lower chambers. Good quality oocytes settled faster than poor quality oocytes in sucrose buffer; therefore, good quality oocytes were collected from the lower outlet. We performed IVF after the microfluidic separation of oocytes. The developmental rate to blastocysts of oocytes collected from the lower outlet was significantly higher than those collected from the upper outlet (36.0% vs. 14.1%). This result was comparable to that in the BCB staining method performed as a comparison method (BCB+ : 35.7%, BCB−: 15.4%). These findings indicate that our microfluidic device could be applied to oocyte separation and contribute to improvement of in vitro embryo production system.