Cargando…

Circuit quantum electrodynamics of granular aluminum resonators

Granular aluminum (grAl) is a promising high kinetic inductance material for detectors, amplifiers, and qubits. Here we model the grAl structure, consisting of pure aluminum grains separated by thin aluminum oxide barriers, as a network of Josephson junctions, and we calculate the dispersion relatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Maleeva, N., Grünhaupt, L., Klein, T., Levy-Bertrand, F., Dupre, O., Calvo, M., Valenti, F., Winkel, P., Friedrich, F., Wernsdorfer, W., Ustinov, A. V., Rotzinger, H., Monfardini, A., Fistul, M. V., Pop, I. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155321/
https://www.ncbi.nlm.nih.gov/pubmed/30250205
http://dx.doi.org/10.1038/s41467-018-06386-9
_version_ 1783357875775602688
author Maleeva, N.
Grünhaupt, L.
Klein, T.
Levy-Bertrand, F.
Dupre, O.
Calvo, M.
Valenti, F.
Winkel, P.
Friedrich, F.
Wernsdorfer, W.
Ustinov, A. V.
Rotzinger, H.
Monfardini, A.
Fistul, M. V.
Pop, I. M.
author_facet Maleeva, N.
Grünhaupt, L.
Klein, T.
Levy-Bertrand, F.
Dupre, O.
Calvo, M.
Valenti, F.
Winkel, P.
Friedrich, F.
Wernsdorfer, W.
Ustinov, A. V.
Rotzinger, H.
Monfardini, A.
Fistul, M. V.
Pop, I. M.
author_sort Maleeva, N.
collection PubMed
description Granular aluminum (grAl) is a promising high kinetic inductance material for detectors, amplifiers, and qubits. Here we model the grAl structure, consisting of pure aluminum grains separated by thin aluminum oxide barriers, as a network of Josephson junctions, and we calculate the dispersion relation and nonlinearity (self-Kerr and cross-Kerr coefficients). To experimentally study the electrodynamics of grAl thin films, we measure microwave resonators with open-boundary conditions and test the theoretical predictions in two limits. For low frequencies, we use standard microwave reflection measurements in a low-loss environment. The measured low-frequency modes are in agreement with our dispersion relation model, and we observe self-Kerr coefficients within an order of magnitude from our calculation starting from the grAl microstructure. Using a high-frequency setup, we measure the plasma frequency of the film around 70 GHz, in agreement with the analytical prediction.
format Online
Article
Text
id pubmed-6155321
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61553212018-09-28 Circuit quantum electrodynamics of granular aluminum resonators Maleeva, N. Grünhaupt, L. Klein, T. Levy-Bertrand, F. Dupre, O. Calvo, M. Valenti, F. Winkel, P. Friedrich, F. Wernsdorfer, W. Ustinov, A. V. Rotzinger, H. Monfardini, A. Fistul, M. V. Pop, I. M. Nat Commun Article Granular aluminum (grAl) is a promising high kinetic inductance material for detectors, amplifiers, and qubits. Here we model the grAl structure, consisting of pure aluminum grains separated by thin aluminum oxide barriers, as a network of Josephson junctions, and we calculate the dispersion relation and nonlinearity (self-Kerr and cross-Kerr coefficients). To experimentally study the electrodynamics of grAl thin films, we measure microwave resonators with open-boundary conditions and test the theoretical predictions in two limits. For low frequencies, we use standard microwave reflection measurements in a low-loss environment. The measured low-frequency modes are in agreement with our dispersion relation model, and we observe self-Kerr coefficients within an order of magnitude from our calculation starting from the grAl microstructure. Using a high-frequency setup, we measure the plasma frequency of the film around 70 GHz, in agreement with the analytical prediction. Nature Publishing Group UK 2018-09-24 /pmc/articles/PMC6155321/ /pubmed/30250205 http://dx.doi.org/10.1038/s41467-018-06386-9 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Maleeva, N.
Grünhaupt, L.
Klein, T.
Levy-Bertrand, F.
Dupre, O.
Calvo, M.
Valenti, F.
Winkel, P.
Friedrich, F.
Wernsdorfer, W.
Ustinov, A. V.
Rotzinger, H.
Monfardini, A.
Fistul, M. V.
Pop, I. M.
Circuit quantum electrodynamics of granular aluminum resonators
title Circuit quantum electrodynamics of granular aluminum resonators
title_full Circuit quantum electrodynamics of granular aluminum resonators
title_fullStr Circuit quantum electrodynamics of granular aluminum resonators
title_full_unstemmed Circuit quantum electrodynamics of granular aluminum resonators
title_short Circuit quantum electrodynamics of granular aluminum resonators
title_sort circuit quantum electrodynamics of granular aluminum resonators
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155321/
https://www.ncbi.nlm.nih.gov/pubmed/30250205
http://dx.doi.org/10.1038/s41467-018-06386-9
work_keys_str_mv AT maleevan circuitquantumelectrodynamicsofgranularaluminumresonators
AT grunhauptl circuitquantumelectrodynamicsofgranularaluminumresonators
AT kleint circuitquantumelectrodynamicsofgranularaluminumresonators
AT levybertrandf circuitquantumelectrodynamicsofgranularaluminumresonators
AT dupreo circuitquantumelectrodynamicsofgranularaluminumresonators
AT calvom circuitquantumelectrodynamicsofgranularaluminumresonators
AT valentif circuitquantumelectrodynamicsofgranularaluminumresonators
AT winkelp circuitquantumelectrodynamicsofgranularaluminumresonators
AT friedrichf circuitquantumelectrodynamicsofgranularaluminumresonators
AT wernsdorferw circuitquantumelectrodynamicsofgranularaluminumresonators
AT ustinovav circuitquantumelectrodynamicsofgranularaluminumresonators
AT rotzingerh circuitquantumelectrodynamicsofgranularaluminumresonators
AT monfardinia circuitquantumelectrodynamicsofgranularaluminumresonators
AT fistulmv circuitquantumelectrodynamicsofgranularaluminumresonators
AT popim circuitquantumelectrodynamicsofgranularaluminumresonators