Cargando…
Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy
Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155323/ https://www.ncbi.nlm.nih.gov/pubmed/30250050 http://dx.doi.org/10.1038/s41598-018-32679-6 |
Sumario: | Lath martensite is the dominant microstructural feature in quenched low-carbon Fe-C alloys. Its formation mechanism is not clear, despite extensive research. The microstructure of an Fe-0.05 C (wt.%) alloy water-quenched at various austenitizing temperatures has been investigated using transmission electron microscopy and a novel lath formation mechanism has been proposed. Body-centered cubic {112}〈111〉-type twin can be retained inside laths in the samples quenched at temperatures from 1050 °C to 1200 °C. The formation mechanism of laths with a twin substructure has been explained based on the twin structure as an initial product of martensitic transformation. A detailed detwinning mechanism in the auto-tempering process has also been discussed, because auto-tempering is inevitable during the quenching of low-carbon Fe-C alloys. The driving force for the detwinning is the instability of ω-Fe(C) particles, which are located only at the twinning boundary region. The twin boundary can move through the ω ↔ bcc transition in which the ω phase region represents the twin boundary. |
---|