Cargando…
Towards exact molecular dynamics simulations with machine-learned force fields
Molecular dynamics (MD) simulations employing classical force fields constitute the cornerstone of contemporary atomistic modeling in chemistry, biology, and materials science. However, the predictive power of these simulations is only as good as the underlying interatomic potential. Classical poten...
Autores principales: | Chmiela, Stefan, Sauceda, Huziel E., Müller, Klaus-Robert, Tkatchenko, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155327/ https://www.ncbi.nlm.nih.gov/pubmed/30250077 http://dx.doi.org/10.1038/s41467-018-06169-2 |
Ejemplares similares
-
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
BIGDML—Towards accurate quantum machine learning force fields for materials
por: Sauceda, Huziel E., et al.
Publicado: (2022) -
Accurate global machine learning force fields for molecules with hundreds of atoms
por: Chmiela, Stefan, et al.
Publicado: (2023) -
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature
por: Sauceda, Huziel E., et al.
Publicado: (2021)