Cargando…

Profiling and Preparation of Metabolites from Pyragrel in Human Urine by Online Solid-Phase Extraction Coupled with High Performance Liquid Chromatography Tandem Mass Spectrometry Followed by a Macroporous Resin-Based Purification Approach

Pyragrel, a new anticoagulant drug, is derived from the molecular combination of ligustrazine and ferulic acid. Pyragrel showed significant inhibitory activity against platelet aggregation induced by adenosine diphosphate (ADP), and had been approved for a phase I clinical trial by CFDA. To characte...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xin, Jiang, Jingjing, Yang, Guang, Huang, Jie, Yang, Guoping, He, Guangwei, Chu, Zhaoxing, Hang, Taijun, Fan, Guorong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155396/
https://www.ncbi.nlm.nih.gov/pubmed/28335566
http://dx.doi.org/10.3390/molecules22030494
Descripción
Sumario:Pyragrel, a new anticoagulant drug, is derived from the molecular combination of ligustrazine and ferulic acid. Pyragrel showed significant inhibitory activity against platelet aggregation induced by adenosine diphosphate (ADP), and had been approved for a phase I clinical trial by CFDA. To characterize the metabolites of Pyragrel in human urine after intravenous administration, a reliable online solid-phase extraction couple with high performance liquid chromatography tandem mass spectrometry (online SPE-HPLC-MS(n)) method was conceived and applied. Five metabolites were detected and tentatively identified, which suggested that the major metabolic pathways of Pyragrel in human were double-bond reduction, double-bond oxidation, and then followed by glucuronide conjugation. Two main metabolites were then prepared using β-glucuronide hydrolysis and macroporous resin purification approach followed by preparative high-performance liquid chromatography (PHPLC) method, with their structures confirmed on the basis of nuclear magnetic resonance (NMR) data. This study provided information for the further study of the metabolism and excretion of Pyragrel.