Cargando…

Theoretical Reactivity Study of Indol-4-Ones and Their Correlation with Antifungal Activity

Chemical reactivity descriptors of indol-4-ones obtained via density functional theory (DFT) and hard–soft acid–base (HSAB) principle were calculated to prove their contribution in antifungal activity. Simple linear regression was made for global and local reactivity indexes. Results with global des...

Descripción completa

Detalles Bibliográficos
Autores principales: Zermeño-Macías, María de los Ángeles, González-Chávez, Marco Martín, Méndez, Francisco, González-Chávez, Rodolfo, Richaud, Arlette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155404/
https://www.ncbi.nlm.nih.gov/pubmed/28282898
http://dx.doi.org/10.3390/molecules22030427
Descripción
Sumario:Chemical reactivity descriptors of indol-4-ones obtained via density functional theory (DFT) and hard–soft acid–base (HSAB) principle were calculated to prove their contribution in antifungal activity. Simple linear regression was made for global and local reactivity indexes. Results with global descriptors showed a strong relationship between antifungal activity vs. softness (S) (r = 0.98) for series I (6, 7a–g), and for series II (8a–g) vs. chemical potential (µ), electronegativity (χ) and electrophilicity (ω) (r = 0.86), p < 0.05. Condensed reactivity descriptors s(k)(+), ω(k)(−) for different fragments had strong relationships for series I and II (r = 0.98 and r = 0.92). Multiple linear regression was statistically significant for S (r = 0.98), η (r = 0.91), and µ/ω (r = 0.91) in series I. Molecular electrostatic potential maps (MEP) showed negative charge accumulation around oxygen of carbonyl group and positive accumulation around nitrogen. Fukui function isosurfaces showed that carbons around nitrogen are susceptible to electrophilic attack, whereas the carbon atoms of the carbonyl and phenyl groups are susceptible to nucleophilic attack for both series. The above suggest that global softness in conjunction with softness and electrophilicity of molecular fragments in enaminone systems and pyrrole rings contribute to antifungal activity of indol-4-ones.