Cargando…
Testing for differential abundance in mass cytometry data
When comparing biological conditions using mass cytometry data, one key challenge is to identify cellular populations that change in abundance. Here, we present a novel computational strategy for detecting these “differentially abundant” populations, by assigning cells to hyperspheres, testing for s...
Autores principales: | Lun, Aaron T. L., Richard, Arianne C., Marioni, John C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155493/ https://www.ncbi.nlm.nih.gov/pubmed/28504682 http://dx.doi.org/10.1038/nmeth.4295 |
Ejemplares similares
-
Correcting the Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data
por: Eling, Nils, et al.
Publicado: (2018) -
Correcting the Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data
por: Eling, Nils, et al.
Publicado: (2019) -
Detection and removal of barcode swapping in single-cell RNA-seq data
por: Griffiths, Jonathan A., et al.
Publicado: (2018) -
Influence of node abundance on signaling network state and dynamics analyzed by mass cytometry
por: Lun, Xiao-Kang, et al.
Publicado: (2017) -
Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
por: Lun, Aaron T. L., et al.
Publicado: (2017)