Cargando…
Quality Evaluation of Pseudostellariae Radix Based on Simultaneous Determination of Multiple Bioactive Components Combined with Grey Relational Analysis
Pseudostellariae Radix (PR) is an important traditional Chinese herbal medicine (TCM) with vast clinical consumption because of its positive effects. However, little attention has been devoted to simultaneous analysis of its bioactive components for quality control of PR based on its different harve...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155879/ https://www.ncbi.nlm.nih.gov/pubmed/28035970 http://dx.doi.org/10.3390/molecules22010013 |
Sumario: | Pseudostellariae Radix (PR) is an important traditional Chinese herbal medicine (TCM) with vast clinical consumption because of its positive effects. However, little attention has been devoted to simultaneous analysis of its bioactive components for quality control of PR based on its different harvesting times, different growing habitats, and different processing methods. In this research, the quality of PR was evaluated based on simultaneous determination of multiple bioactive components combined with grey relational analysis (GRA). A reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was established to simultaneously determine the contents of 30 components in PR, including two cyclopeptides, 12 nucleosides, and 16 amino acids. Furthermore, grey relational analysis was performed to evaluate the quality of PR samples according to the contents of these 30 components. The results showed that the quality of PR harvested in 6 August 2013, cultivated in Jurong, Jiangsu, and treated by oven drying 60 °C was better than that of other PR samples. The proposed method is useful for the overall assessment on the quality of PR, and this study provides valuable information for revealing the dynamic change laws of metabolite accumulation in PR and choosing the most suitable harvesting time and reasonable processing method of PR to obtain the best quality. |
---|