Cargando…
Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model
DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-def...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155889/ https://www.ncbi.nlm.nih.gov/pubmed/28275219 http://dx.doi.org/10.3390/molecules22010145 |
_version_ | 1783357989330092032 |
---|---|
author | Hu, Guang He, Lei Iacovelli, Federico Falconi, Mattia |
author_facet | Hu, Guang He, Lei Iacovelli, Federico Falconi, Mattia |
author_sort | Hu, Guang |
collection | PubMed |
description | DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs). The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology. |
format | Online Article Text |
id | pubmed-6155889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61558892018-11-13 Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model Hu, Guang He, Lei Iacovelli, Federico Falconi, Mattia Molecules Article DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs). The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology. MDPI 2017-01-16 /pmc/articles/PMC6155889/ /pubmed/28275219 http://dx.doi.org/10.3390/molecules22010145 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Guang He, Lei Iacovelli, Federico Falconi, Mattia Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model |
title | Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model |
title_full | Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model |
title_fullStr | Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model |
title_full_unstemmed | Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model |
title_short | Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model |
title_sort | intrinsic dynamics analysis of a dna octahedron by elastic network model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155889/ https://www.ncbi.nlm.nih.gov/pubmed/28275219 http://dx.doi.org/10.3390/molecules22010145 |
work_keys_str_mv | AT huguang intrinsicdynamicsanalysisofadnaoctahedronbyelasticnetworkmodel AT helei intrinsicdynamicsanalysisofadnaoctahedronbyelasticnetworkmodel AT iacovellifederico intrinsicdynamicsanalysisofadnaoctahedronbyelasticnetworkmodel AT falconimattia intrinsicdynamicsanalysisofadnaoctahedronbyelasticnetworkmodel |