Cargando…
Formation of Colloidal Copper Indium Sulfide Nanosheets by Two-Dimensional Self-Organization
[Image: see text] Colloidal 2D semiconductor nanosheets (NSs) are an interesting new class of materials due to their unique properties. However, synthesis of these NSs is challenging, and synthesis procedures for materials other than the well-known Pb- and Cd-chalcogenides are still underdeveloped....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156094/ https://www.ncbi.nlm.nih.gov/pubmed/30270984 http://dx.doi.org/10.1021/acs.chemmater.7b04925 |
Sumario: | [Image: see text] Colloidal 2D semiconductor nanosheets (NSs) are an interesting new class of materials due to their unique properties. However, synthesis of these NSs is challenging, and synthesis procedures for materials other than the well-known Pb- and Cd-chalcogenides are still underdeveloped. In this paper, we present a new approach to make copper indium sulfide (CIS) NSs and study their structural and optical properties. The CIS NSs form via self-organization and oriented attachment of 2.5 nm chalcopyrite CuInS(2) nanocrystals (NCs), yielding triangular- and hexagonal-shaped NSs with a thickness of ∼3 nm and lateral dimensions ranging from 20 to 1000 nm. The self-organization is induced by fast cation extraction, leading to attractive dipolar interactions between the NCs. Primary amines play a crucial role in the formation of the CIS NSs, both by forming in situ the cation extracting agent, and by preventing the attachment of NCs to the top and bottom facets of the NSs. Moreover, DFT calculations reveal that the amines are essential to stabilize the covellite crystal structure of the product CIS NSs. The NSs are indium-deficient and the off-stoichiometry gives rise to a plasmon resonance in the NIR spectral window. |
---|