Cargando…

High-Performance Acetylated Ioncell-F Fibers with Low Degree of Substitution

[Image: see text] Cellulose acetate is one of the most important cellulose derivatives. Herein we present a method to access cellulose acetate with a low degree of substitution through a homogeneous reaction in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]). This ionic liq...

Descripción completa

Detalles Bibliográficos
Autores principales: Asaadi, Shirin, Kakko, Tia, King, Alistair W.T., Kilpeläinen, Ilkka, Hummel, Michael, Sixta, Herbert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156107/
https://www.ncbi.nlm.nih.gov/pubmed/30271692
http://dx.doi.org/10.1021/acssuschemeng.8b01768
Descripción
Sumario:[Image: see text] Cellulose acetate is one of the most important cellulose derivatives. Herein we present a method to access cellulose acetate with a low degree of substitution through a homogeneous reaction in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]). This ionic liquid has also been identified as an excellent cellulose solvent for dry-jet wet fiber spinning. Cellulose was dissolved in [DBNH][OAc] and esterified in situ to be immediately spun into modified cellulose filaments with a degree of substitution (DS) value of 0.05–0.75. The structural properties of the resulting fibers, which are characterized by particularly high tensile strength values (525–750 MPa conditioned and 315–615 MPa wet) and elastic moduli between 10–26 GPa, were investigated by birefringence measurements, wide-angle X-ray scattering, and molar mass distribution techniques while their unique interactions with water have been studied through dynamic vapor sorption. Thus, an understanding of the novel process is gained, and the advantages are demonstrated for producing high-value products such as textiles, biocomposites, filters, and membranes.