Cargando…
Selective Coupling of Bioderived Aliphatic Alcohols with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal Oxide and Raney Nickel
[Image: see text] Fermentation of sugars to the so-called ABE mixture delivers a three component mixture of shorter chain oxygenates: acetone, n-butanol and ethanol. In order to convert these into liquid transportation fuels that are analogous to the currently used fossil energy carriers, novel cata...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156109/ https://www.ncbi.nlm.nih.gov/pubmed/30271689 http://dx.doi.org/10.1021/acssuschemeng.8b00733 |
_version_ | 1783358034909593600 |
---|---|
author | Fridrich, Bálint Stuart, Marc C. A. Barta, Katalin |
author_facet | Fridrich, Bálint Stuart, Marc C. A. Barta, Katalin |
author_sort | Fridrich, Bálint |
collection | PubMed |
description | [Image: see text] Fermentation of sugars to the so-called ABE mixture delivers a three component mixture of shorter chain oxygenates: acetone, n-butanol and ethanol. In order to convert these into liquid transportation fuels that are analogous to the currently used fossil energy carriers, novel catalytic chain elongation methods involving C–C bond formation are desired. Herein we report on a simple, non-noble-metal-based method for the highly selective coupling of 1-butanol and acetone into high molecular weight (C7–C11) ketones, as well as ABE mixtures into (C5–C11) ketones using the solid base Mg–Al–PMO in combination with small amount of Raney nickel. Upon hydrodeoxygenation, these ketones are converted to fuel range alkanes with excellent carbon utilization (up to 89%) using Earth abundant metal containing catalysis. |
format | Online Article Text |
id | pubmed-6156109 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-61561092018-09-27 Selective Coupling of Bioderived Aliphatic Alcohols with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal Oxide and Raney Nickel Fridrich, Bálint Stuart, Marc C. A. Barta, Katalin ACS Sustain Chem Eng [Image: see text] Fermentation of sugars to the so-called ABE mixture delivers a three component mixture of shorter chain oxygenates: acetone, n-butanol and ethanol. In order to convert these into liquid transportation fuels that are analogous to the currently used fossil energy carriers, novel catalytic chain elongation methods involving C–C bond formation are desired. Herein we report on a simple, non-noble-metal-based method for the highly selective coupling of 1-butanol and acetone into high molecular weight (C7–C11) ketones, as well as ABE mixtures into (C5–C11) ketones using the solid base Mg–Al–PMO in combination with small amount of Raney nickel. Upon hydrodeoxygenation, these ketones are converted to fuel range alkanes with excellent carbon utilization (up to 89%) using Earth abundant metal containing catalysis. American Chemical Society 2018-05-30 2018-07-02 /pmc/articles/PMC6156109/ /pubmed/30271689 http://dx.doi.org/10.1021/acssuschemeng.8b00733 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Fridrich, Bálint Stuart, Marc C. A. Barta, Katalin Selective Coupling of Bioderived Aliphatic Alcohols with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal Oxide and Raney Nickel |
title | Selective Coupling of Bioderived Aliphatic Alcohols
with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal
Oxide and Raney Nickel |
title_full | Selective Coupling of Bioderived Aliphatic Alcohols
with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal
Oxide and Raney Nickel |
title_fullStr | Selective Coupling of Bioderived Aliphatic Alcohols
with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal
Oxide and Raney Nickel |
title_full_unstemmed | Selective Coupling of Bioderived Aliphatic Alcohols
with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal
Oxide and Raney Nickel |
title_short | Selective Coupling of Bioderived Aliphatic Alcohols
with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal
Oxide and Raney Nickel |
title_sort | selective coupling of bioderived aliphatic alcohols
with acetone using hydrotalcite derived mg–al porous metal
oxide and raney nickel |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156109/ https://www.ncbi.nlm.nih.gov/pubmed/30271689 http://dx.doi.org/10.1021/acssuschemeng.8b00733 |
work_keys_str_mv | AT fridrichbalint selectivecouplingofbioderivedaliphaticalcoholswithacetoneusinghydrotalcitederivedmgalporousmetaloxideandraneynickel AT stuartmarcca selectivecouplingofbioderivedaliphaticalcoholswithacetoneusinghydrotalcitederivedmgalporousmetaloxideandraneynickel AT bartakatalin selectivecouplingofbioderivedaliphaticalcoholswithacetoneusinghydrotalcitederivedmgalporousmetaloxideandraneynickel |