Cargando…
Simple method for fabricating scattering layer using random nanoscale rods for improving optical properties of organic light-emitting diodes
We investigated a low-temperature mask-free process for preparing random nanoscale rods (RNRs) as a scattering layer. The process involves spin coating and dry etching, which are already widely applied in industry. Our film exhibited 17–33% optical haze at 520 nm wavelength and 95% total transmittan...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156328/ https://www.ncbi.nlm.nih.gov/pubmed/30254286 http://dx.doi.org/10.1038/s41598-018-32538-4 |
Sumario: | We investigated a low-temperature mask-free process for preparing random nanoscale rods (RNRs) as a scattering layer. The process involves spin coating and dry etching, which are already widely applied in industry. Our film exhibited 17–33% optical haze at 520 nm wavelength and 95% total transmittance in the visible range. Therefore, this film can be used as a scattering layer for improving viewing angle characteristics and decreasing substrate mode loss in organic light-emitting diodes (OLEDs). Specifically, we focussed on varying the height and density of the RNRs to control the optical characteristics. As a result, the OLEDs with RNRs revealed a variation in colour coordinates of Δ(x, y) = (0.007, 0.014) for a change in the viewing angle, which was superior to those without the RNRs that displayed a variation of Δ(x, y) = (0.020, 0.034) in CIE 1931. Moreover, the OLEDs with RNRs exhibited 31% enhanced external quantum efficiency compared to those of the OLEDs with the bare substrate. The flexibility of the polymer used for the RNRs and the plasma treatment suggests that the RNRs can be applied to flexible OLED displays and lighting systems. |
---|