Cargando…

Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction

Pacific oysters are a key aquaculture species globally, and genetic improvement via selective breeding is a major target. Genomic selection has the potential to expedite genetic gain for key target traits of a breeding program, but has not yet been evaluated in oyster. The recent development of SNP...

Descripción completa

Detalles Bibliográficos
Autores principales: Gutierrez, Alejandro P., Matika, Oswald, Bean, Tim P., Houston, Ross D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156352/
https://www.ncbi.nlm.nih.gov/pubmed/30283494
http://dx.doi.org/10.3389/fgene.2018.00391
_version_ 1783358082534866944
author Gutierrez, Alejandro P.
Matika, Oswald
Bean, Tim P.
Houston, Ross D.
author_facet Gutierrez, Alejandro P.
Matika, Oswald
Bean, Tim P.
Houston, Ross D.
author_sort Gutierrez, Alejandro P.
collection PubMed
description Pacific oysters are a key aquaculture species globally, and genetic improvement via selective breeding is a major target. Genomic selection has the potential to expedite genetic gain for key target traits of a breeding program, but has not yet been evaluated in oyster. The recent development of SNP arrays for Pacific oyster (Crassostrea gigas) raises the opportunity to test genomic selection strategies for polygenic traits. In this study, a population of 820 oysters (comprising 23 full-sibling families) were genotyped using a medium density SNP array (23 K informative SNPs), and the genetic architecture of growth-related traits [shell height (SH), shell length (SL), and wet weight (WW)] was evaluated. Heritability was estimated to be moderate for the three traits (0.26 ± 0.06 for SH, 0.23 ± 0.06 for SL and 0.35 ± 0.05 for WW), and results of a GWAS indicated that the underlying genetic architecture was polygenic. Genomic prediction approaches were used to estimate breeding values for growth, and compared to pedigree based approaches. The accuracy of the genomic prediction models (GBLUP) outperformed the traditional pedigree approach (PBLUP) by ∼25% for SL and WW, and ∼30% for SH. Further, reduction in SNP marker density had little impact on prediction accuracy, even when density was reduced to a few hundred SNPs. These results suggest that the use of genomic selection in oyster breeding could offer benefits for the selection of breeding candidates to improve complex economic traits at relatively modest cost.
format Online
Article
Text
id pubmed-6156352
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61563522018-10-03 Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction Gutierrez, Alejandro P. Matika, Oswald Bean, Tim P. Houston, Ross D. Front Genet Genetics Pacific oysters are a key aquaculture species globally, and genetic improvement via selective breeding is a major target. Genomic selection has the potential to expedite genetic gain for key target traits of a breeding program, but has not yet been evaluated in oyster. The recent development of SNP arrays for Pacific oyster (Crassostrea gigas) raises the opportunity to test genomic selection strategies for polygenic traits. In this study, a population of 820 oysters (comprising 23 full-sibling families) were genotyped using a medium density SNP array (23 K informative SNPs), and the genetic architecture of growth-related traits [shell height (SH), shell length (SL), and wet weight (WW)] was evaluated. Heritability was estimated to be moderate for the three traits (0.26 ± 0.06 for SH, 0.23 ± 0.06 for SL and 0.35 ± 0.05 for WW), and results of a GWAS indicated that the underlying genetic architecture was polygenic. Genomic prediction approaches were used to estimate breeding values for growth, and compared to pedigree based approaches. The accuracy of the genomic prediction models (GBLUP) outperformed the traditional pedigree approach (PBLUP) by ∼25% for SL and WW, and ∼30% for SH. Further, reduction in SNP marker density had little impact on prediction accuracy, even when density was reduced to a few hundred SNPs. These results suggest that the use of genomic selection in oyster breeding could offer benefits for the selection of breeding candidates to improve complex economic traits at relatively modest cost. Frontiers Media S.A. 2018-09-19 /pmc/articles/PMC6156352/ /pubmed/30283494 http://dx.doi.org/10.3389/fgene.2018.00391 Text en Copyright © 2018 Gutierrez, Matika, Bean and Houston. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Gutierrez, Alejandro P.
Matika, Oswald
Bean, Tim P.
Houston, Ross D.
Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction
title Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction
title_full Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction
title_fullStr Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction
title_full_unstemmed Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction
title_short Genomic Selection for Growth Traits in Pacific Oyster (Crassostrea gigas): Potential of Low-Density Marker Panels for Breeding Value Prediction
title_sort genomic selection for growth traits in pacific oyster (crassostrea gigas): potential of low-density marker panels for breeding value prediction
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156352/
https://www.ncbi.nlm.nih.gov/pubmed/30283494
http://dx.doi.org/10.3389/fgene.2018.00391
work_keys_str_mv AT gutierrezalejandrop genomicselectionforgrowthtraitsinpacificoystercrassostreagigaspotentialoflowdensitymarkerpanelsforbreedingvalueprediction
AT matikaoswald genomicselectionforgrowthtraitsinpacificoystercrassostreagigaspotentialoflowdensitymarkerpanelsforbreedingvalueprediction
AT beantimp genomicselectionforgrowthtraitsinpacificoystercrassostreagigaspotentialoflowdensitymarkerpanelsforbreedingvalueprediction
AT houstonrossd genomicselectionforgrowthtraitsinpacificoystercrassostreagigaspotentialoflowdensitymarkerpanelsforbreedingvalueprediction