Cargando…
Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method
Heart failure (HF) imposes a major global health care burden on society and suffering on the individual. About 50% of HF patients have preserved ejection fraction (HFpEF). More intricate and comprehensive measurement-focused imaging of multiple strain components may aid in the diagnosis and elucidat...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156386/ https://www.ncbi.nlm.nih.gov/pubmed/30283352 http://dx.doi.org/10.3389/fphys.2018.01295 |
_version_ | 1783358090440081408 |
---|---|
author | Zou, Hua Xi, Ce Zhao, Xiaodan Koh, Angela S. Gao, Fei Su, Yi Tan, Ru-San Allen, John Lee, Lik Chuan Genet, Martin Zhong, Liang |
author_facet | Zou, Hua Xi, Ce Zhao, Xiaodan Koh, Angela S. Gao, Fei Su, Yi Tan, Ru-San Allen, John Lee, Lik Chuan Genet, Martin Zhong, Liang |
author_sort | Zou, Hua |
collection | PubMed |
description | Heart failure (HF) imposes a major global health care burden on society and suffering on the individual. About 50% of HF patients have preserved ejection fraction (HFpEF). More intricate and comprehensive measurement-focused imaging of multiple strain components may aid in the diagnosis and elucidation of this disease. Here, we describe the development of a semi-automated hyperelastic warping method for rapid comprehensive assessment of biventricular circumferential, longitudinal, and radial strains that is physiological meaningful and reproducible. We recruited and performed cardiac magnetic resonance (CMR) imaging on 30 subjects [10 HFpEF, 10 HF with reduced ejection fraction patients (HFrEF) and 10 healthy controls]. In each subject, a three-dimensional heart model including left ventricle (LV), right ventricle (RV), and septum was reconstructed from CMR images. The hyperelastic warping method was used to reference the segmented model with the target images and biventricular circumferential, longitudinal, and radial strain–time curves were obtained. The peak systolic strains are then measured and analyzed in this study. Intra- and inter-observer reproducibility of the biventricular peak systolic strains was excellent with all ICCs > 0.92. LV peak systolic circumferential, longitudinal, and radial strain, respectively, exhibited a progressive decrease in magnitude from healthy control→HFpEF→HFrEF: control (-15.5 ± 1.90, -15.6 ± 2.06, 41.4 ± 12.2%); HFpEF (-9.37 ± 3.23, -11.3 ± 1.76, 22.8 ± 13.1%); HFrEF (-4.75 ± 2.74, -7.55 ± 1.75, 10.8 ± 4.61%). A similar progressive decrease in magnitude was observed for RV peak systolic circumferential, longitudinal and radial strain: control (-9.91 ± 2.25, -14.5 ± 2.63, 26.8 ± 7.16%); HFpEF (-7.38 ± 3.17, -12.0 ± 2.45, 21.5 ± 10.0%); HFrEF (-5.92 ± 3.13, -8.63 ± 2.79, 15.2 ± 6.33%). Furthermore, septum peak systolic circumferential, longitudinal, and radial strain magnitude decreased gradually from healthy control to HFrEF: control (-7.11 ± 1.81, 16.3 ± 3.23, 18.5 ± 8.64%); HFpEF (-6.11 ± 3.98, -13.4 ± 3.02, 12.5 ± 6.38%); HFrEF (-1.42 ± 1.36, -8.99 ± 2.96, 3.35 ± 2.95%). The ROC analysis indicated LV peak systolic circumferential strain to be the most sensitive marker for differentiating HFpEF from healthy controls. Our results suggest that the hyperelastic warping method with the CMR-derived strains may reveal subtle impairment in HF biventricular mechanics, in particular despite a “normal” ventricular ejection fraction in HFpEF. |
format | Online Article Text |
id | pubmed-6156386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61563862018-10-03 Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method Zou, Hua Xi, Ce Zhao, Xiaodan Koh, Angela S. Gao, Fei Su, Yi Tan, Ru-San Allen, John Lee, Lik Chuan Genet, Martin Zhong, Liang Front Physiol Physiology Heart failure (HF) imposes a major global health care burden on society and suffering on the individual. About 50% of HF patients have preserved ejection fraction (HFpEF). More intricate and comprehensive measurement-focused imaging of multiple strain components may aid in the diagnosis and elucidation of this disease. Here, we describe the development of a semi-automated hyperelastic warping method for rapid comprehensive assessment of biventricular circumferential, longitudinal, and radial strains that is physiological meaningful and reproducible. We recruited and performed cardiac magnetic resonance (CMR) imaging on 30 subjects [10 HFpEF, 10 HF with reduced ejection fraction patients (HFrEF) and 10 healthy controls]. In each subject, a three-dimensional heart model including left ventricle (LV), right ventricle (RV), and septum was reconstructed from CMR images. The hyperelastic warping method was used to reference the segmented model with the target images and biventricular circumferential, longitudinal, and radial strain–time curves were obtained. The peak systolic strains are then measured and analyzed in this study. Intra- and inter-observer reproducibility of the biventricular peak systolic strains was excellent with all ICCs > 0.92. LV peak systolic circumferential, longitudinal, and radial strain, respectively, exhibited a progressive decrease in magnitude from healthy control→HFpEF→HFrEF: control (-15.5 ± 1.90, -15.6 ± 2.06, 41.4 ± 12.2%); HFpEF (-9.37 ± 3.23, -11.3 ± 1.76, 22.8 ± 13.1%); HFrEF (-4.75 ± 2.74, -7.55 ± 1.75, 10.8 ± 4.61%). A similar progressive decrease in magnitude was observed for RV peak systolic circumferential, longitudinal and radial strain: control (-9.91 ± 2.25, -14.5 ± 2.63, 26.8 ± 7.16%); HFpEF (-7.38 ± 3.17, -12.0 ± 2.45, 21.5 ± 10.0%); HFrEF (-5.92 ± 3.13, -8.63 ± 2.79, 15.2 ± 6.33%). Furthermore, septum peak systolic circumferential, longitudinal, and radial strain magnitude decreased gradually from healthy control to HFrEF: control (-7.11 ± 1.81, 16.3 ± 3.23, 18.5 ± 8.64%); HFpEF (-6.11 ± 3.98, -13.4 ± 3.02, 12.5 ± 6.38%); HFrEF (-1.42 ± 1.36, -8.99 ± 2.96, 3.35 ± 2.95%). The ROC analysis indicated LV peak systolic circumferential strain to be the most sensitive marker for differentiating HFpEF from healthy controls. Our results suggest that the hyperelastic warping method with the CMR-derived strains may reveal subtle impairment in HF biventricular mechanics, in particular despite a “normal” ventricular ejection fraction in HFpEF. Frontiers Media S.A. 2018-09-19 /pmc/articles/PMC6156386/ /pubmed/30283352 http://dx.doi.org/10.3389/fphys.2018.01295 Text en Copyright © 2018 Zou, Xi, Zhao, Koh, Gao, Su, Tan, Allen, Lee, Genet and Zhong. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Zou, Hua Xi, Ce Zhao, Xiaodan Koh, Angela S. Gao, Fei Su, Yi Tan, Ru-San Allen, John Lee, Lik Chuan Genet, Martin Zhong, Liang Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method |
title | Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method |
title_full | Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method |
title_fullStr | Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method |
title_full_unstemmed | Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method |
title_short | Quantification of Biventricular Strains in Heart Failure With Preserved Ejection Fraction Patient Using Hyperelastic Warping Method |
title_sort | quantification of biventricular strains in heart failure with preserved ejection fraction patient using hyperelastic warping method |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156386/ https://www.ncbi.nlm.nih.gov/pubmed/30283352 http://dx.doi.org/10.3389/fphys.2018.01295 |
work_keys_str_mv | AT zouhua quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT xice quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT zhaoxiaodan quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT kohangelas quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT gaofei quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT suyi quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT tanrusan quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT allenjohn quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT leelikchuan quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT genetmartin quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod AT zhongliang quantificationofbiventricularstrainsinheartfailurewithpreservedejectionfractionpatientusinghyperelasticwarpingmethod |