Cargando…
Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching
In transition metal perovskites ABO(3), the physical properties are largely driven by the rotations of the BO(6) octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect var...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156682/ https://www.ncbi.nlm.nih.gov/pubmed/30185557 http://dx.doi.org/10.1073/pnas.1807457115 |
_version_ | 1783358144309624832 |
---|---|
author | Liao, Zhaoliang Gauquelin, Nicolas Green, Robert J. Müller-Caspary, Knut Lobato, Ivan Li, Lin Van Aert, Sandra Verbeeck, Johan Huijben, Mark Grisolia, Mathieu N. Rouco, Victor El Hage, Ralph Villegas, Javier E. Mercy, Alain Bibes, Manuel Ghosez, Philippe Sawatzky, George A. Rijnders, Guus Koster, Gertjan |
author_facet | Liao, Zhaoliang Gauquelin, Nicolas Green, Robert J. Müller-Caspary, Knut Lobato, Ivan Li, Lin Van Aert, Sandra Verbeeck, Johan Huijben, Mark Grisolia, Mathieu N. Rouco, Victor El Hage, Ralph Villegas, Javier E. Mercy, Alain Bibes, Manuel Ghosez, Philippe Sawatzky, George A. Rijnders, Guus Koster, Gertjan |
author_sort | Liao, Zhaoliang |
collection | PubMed |
description | In transition metal perovskites ABO(3), the physical properties are largely driven by the rotations of the BO(6) octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths, and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as an approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes—that is, directly on the bond angles. By intercalating the prototype SmNiO(3) target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials’ properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants, and oxygen rotation angles), and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO(3) compound. With this unique approach, we successfully adjusted the metal–insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications. |
format | Online Article Text |
id | pubmed-6156682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-61566822018-09-27 Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Liao, Zhaoliang Gauquelin, Nicolas Green, Robert J. Müller-Caspary, Knut Lobato, Ivan Li, Lin Van Aert, Sandra Verbeeck, Johan Huijben, Mark Grisolia, Mathieu N. Rouco, Victor El Hage, Ralph Villegas, Javier E. Mercy, Alain Bibes, Manuel Ghosez, Philippe Sawatzky, George A. Rijnders, Guus Koster, Gertjan Proc Natl Acad Sci U S A Physical Sciences In transition metal perovskites ABO(3), the physical properties are largely driven by the rotations of the BO(6) octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths, and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as an approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes—that is, directly on the bond angles. By intercalating the prototype SmNiO(3) target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials’ properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants, and oxygen rotation angles), and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO(3) compound. With this unique approach, we successfully adjusted the metal–insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications. National Academy of Sciences 2018-09-18 2018-09-05 /pmc/articles/PMC6156682/ /pubmed/30185557 http://dx.doi.org/10.1073/pnas.1807457115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Liao, Zhaoliang Gauquelin, Nicolas Green, Robert J. Müller-Caspary, Knut Lobato, Ivan Li, Lin Van Aert, Sandra Verbeeck, Johan Huijben, Mark Grisolia, Mathieu N. Rouco, Victor El Hage, Ralph Villegas, Javier E. Mercy, Alain Bibes, Manuel Ghosez, Philippe Sawatzky, George A. Rijnders, Guus Koster, Gertjan Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching |
title | Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching |
title_full | Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching |
title_fullStr | Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching |
title_full_unstemmed | Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching |
title_short | Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching |
title_sort | metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156682/ https://www.ncbi.nlm.nih.gov/pubmed/30185557 http://dx.doi.org/10.1073/pnas.1807457115 |
work_keys_str_mv | AT liaozhaoliang metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT gauquelinnicolas metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT greenrobertj metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT mullercasparyknut metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT lobatoivan metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT lilin metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT vanaertsandra metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT verbeeckjohan metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT huijbenmark metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT grisoliamathieun metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT roucovictor metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT elhageralph metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT villegasjaviere metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT mercyalain metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT bibesmanuel metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT ghosezphilippe metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT sawatzkygeorgea metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT rijndersguus metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching AT kostergertjan metalinsulatortransitionengineeringbymodulationtiltcontrolinperovskitenickelatesforroomtemperatureopticalswitching |