Cargando…

Cationic Liposomes: A Flexible Vaccine Delivery System for Physicochemically Diverse Antigenic Peptides

PURPOSE: Personalized peptide-based cancer vaccines will be composed of multiple patient specific synthetic long peptides (SLPs) which may have various physicochemical properties. To formulate such SLPs, a flexible vaccine delivery system is required. We studied whether cationic liposomes are suitab...

Descripción completa

Detalles Bibliográficos
Autores principales: Heuts, Jeroen, Varypataki, Eleni Maria, van der Maaden, Koen, Romeijn, Stefan, Drijfhout, Jan Wouter, van Scheltinga, Anton Terwisscha, Ossendorp, Ferry, Jiskoot, Wim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156754/
https://www.ncbi.nlm.nih.gov/pubmed/30209623
http://dx.doi.org/10.1007/s11095-018-2490-6
Descripción
Sumario:PURPOSE: Personalized peptide-based cancer vaccines will be composed of multiple patient specific synthetic long peptides (SLPs) which may have various physicochemical properties. To formulate such SLPs, a flexible vaccine delivery system is required. We studied whether cationic liposomes are suitable for this purpose. METHODS: Fifteen SIINFEKL T cell epitope-containing SLPs, widely differing in hydrophobicity and isoelectric point, were separately loaded in cationic liposomes via the dehydration-rehydration method. Particle size and polydispersity index (PDI) were measured via dynamic light scattering (DLS), and zeta potential with laser Doppler electrophoresis. Peptide loading was fluorescently determined and the immunogenicity of the formulated peptides was assessed in co-cultures of dendritic cells (DCs) and CD8(+) T-cells in vitro. RESULTS: All SLPs were loaded in cationic liposomes by using three different loading method variants, depending on the SLP characteristics. The fifteen liposomal formulations had a comparable size (< 200 nm), PDI (< 0.3) and zeta potential (22–30 mV). Cationic liposomes efficiently delivered the SLPs to DCs that subsequently activated SIINFEKL-specific CD8(+) T-cells, indicating improved immunological activity of the SLPs. CONCLUSION: Cationic liposomes can accommodate a wide range of different SLPs and are therefore a potential delivery platform for personalized cancer vaccines. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11095-018-2490-6) contains supplementary material, which is available to authorized users.