Cargando…
Genome-wide association study for multiple phenotype analysis
Genome-wide association studies often collect multiple phenotypes for complex diseases. Multivariate joint analyses have higher power to detect genetic variants compared with the marginal analysis of each phenotype and are also able to identify loci with pleiotropic effects. We extend the unified sc...
Autores principales: | Deng, Xuan, Wang, Biqi, Fisher, Virginia, Peloso, Gina, Cupples, Adrienne, Liu, Ching-Ti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156845/ https://www.ncbi.nlm.nih.gov/pubmed/30263053 http://dx.doi.org/10.1186/s12919-018-0135-8 |
Ejemplares similares
-
Network analysis of drug effect on triglyceride-associated DNA methylation
por: Lim, Elise, et al.
Publicado: (2018) -
Incorporating biological knowledge in the search for gene × gene interaction in genome-wide association studies
por: Manning, Alisa K, et al.
Publicado: (2009) -
Comparing baseline and longitudinal measures in association studies
por: Wang, Shuai, et al.
Publicado: (2014) -
Power and type I error rate of false discovery rate approaches in genome-wide association studies
por: Yang, Qiong, et al.
Publicado: (2005) -
Comparison of statistical approaches to rare variant analysis for quantitative traits
por: Chen, Han, et al.
Publicado: (2011)