Cargando…
Optimal selection of molecular descriptors for antimicrobial peptides classification: an evolutionary feature weighting approach
BACKGROUND: Antimicrobial peptides are a promising alternative for combating pathogens resistant to conventional antibiotics. Computer-assisted peptide discovery strategies are necessary to automatically assess a significant amount of data by generating models that efficiently classify what an antim...
Autores principales: | Beltran, Jesus A., Aguilera-Mendoza, Longendri, Brizuela, Carlos A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156846/ https://www.ncbi.nlm.nih.gov/pubmed/30255784 http://dx.doi.org/10.1186/s12864-018-5030-1 |
Ejemplares similares
-
An automatic representation of peptides for effective antimicrobial activity classification
por: Beltran, Jesus A., et al.
Publicado: (2020) -
Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs
por: Nava Lara, Rodrigo A., et al.
Publicado: (2019) -
Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach
por: Aguilera-Mendoza, Longendri, et al.
Publicado: (2020) -
StarPep Toolbox: an open-source software to assist chemical space analysis of bioactive peptides and their functions using complex networks
por: Aguilera-Mendoza, Longendri, et al.
Publicado: (2023) -
A Novel Network Science and Similarity-Searching-Based Approach for Discovering Potential Tumor-Homing Peptides from Antimicrobials
por: Romero, Maylin, et al.
Publicado: (2022)