Cargando…
Deep learning-based transcriptome data classification for drug-target interaction prediction
BACKGROUND: The ability to predict the interaction of drugs with target proteins is essential to research and development of drug. However, the traditional experimental paradigm is costly, and previous in silico prediction paradigms have been impeded by the wide range of data platforms and data scar...
Autores principales: | Xie, Lingwei, He, Song, Song, Xinyu, Bo, Xiaochen, Zhang, Zhongnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156897/ https://www.ncbi.nlm.nih.gov/pubmed/30255785 http://dx.doi.org/10.1186/s12864-018-5031-0 |
Ejemplares similares
-
Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification
por: Xie, Lingwei, et al.
Publicado: (2017) -
Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking
por: Ye, Yihua, et al.
Publicado: (2021) -
A benchmark study of deep learning-based multi-omics data fusion methods for cancer
por: Leng, Dongjin, et al.
Publicado: (2022) -
MOCSS: Multi-omics data clustering and cancer subtyping via shared and specific representation learning
por: Chen, Yuxin, et al.
Publicado: (2023) -
A Deep Learning-Based Classification Method for Different Frequency EEG Data
por: Wen, Tingxi, et al.
Publicado: (2021)