Cargando…

Corrigendum to “A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks”

Detalles Bibliográficos
Autores principales: Li, Fangzhao, Wang, Changjian, Liu, Xiaohui, Peng, Yuxing, Jin, Shiyao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157104/
https://www.ncbi.nlm.nih.gov/pubmed/30275821
http://dx.doi.org/10.1155/2018/4967290
_version_ 1783358210443313152
author Li, Fangzhao
Wang, Changjian
Liu, Xiaohui
Peng, Yuxing
Jin, Shiyao
author_facet Li, Fangzhao
Wang, Changjian
Liu, Xiaohui
Peng, Yuxing
Jin, Shiyao
author_sort Li, Fangzhao
collection PubMed
description
format Online
Article
Text
id pubmed-6157104
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-61571042018-10-01 Corrigendum to “A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks” Li, Fangzhao Wang, Changjian Liu, Xiaohui Peng, Yuxing Jin, Shiyao Comput Intell Neurosci Corrigendum Hindawi 2018-09-12 /pmc/articles/PMC6157104/ /pubmed/30275821 http://dx.doi.org/10.1155/2018/4967290 Text en Copyright © 2018 Fangzhao Li et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Corrigendum
Li, Fangzhao
Wang, Changjian
Liu, Xiaohui
Peng, Yuxing
Jin, Shiyao
Corrigendum to “A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks”
title Corrigendum to “A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks”
title_full Corrigendum to “A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks”
title_fullStr Corrigendum to “A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks”
title_full_unstemmed Corrigendum to “A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks”
title_short Corrigendum to “A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks”
title_sort corrigendum to “a composite model of wound segmentation based on traditional methods and deep neural networks”
topic Corrigendum
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157104/
https://www.ncbi.nlm.nih.gov/pubmed/30275821
http://dx.doi.org/10.1155/2018/4967290
work_keys_str_mv AT lifangzhao corrigendumtoacompositemodelofwoundsegmentationbasedontraditionalmethodsanddeepneuralnetworks
AT wangchangjian corrigendumtoacompositemodelofwoundsegmentationbasedontraditionalmethodsanddeepneuralnetworks
AT liuxiaohui corrigendumtoacompositemodelofwoundsegmentationbasedontraditionalmethodsanddeepneuralnetworks
AT pengyuxing corrigendumtoacompositemodelofwoundsegmentationbasedontraditionalmethodsanddeepneuralnetworks
AT jinshiyao corrigendumtoacompositemodelofwoundsegmentationbasedontraditionalmethodsanddeepneuralnetworks