Cargando…
Using recursive feature elimination in random forest to account for correlated variables in high dimensional data
BACKGROUND: Random forest (RF) is a machine-learning method that generally works well with high-dimensional problems and allows for nonlinear relationships between predictors; however, the presence of correlated predictors has been shown to impact its ability to identify strong predictors. The Rando...
Autores principales: | Darst, Burcu F., Malecki, Kristen C., Engelman, Corinne D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157185/ https://www.ncbi.nlm.nih.gov/pubmed/30255764 http://dx.doi.org/10.1186/s12863-018-0633-8 |
Ejemplares similares
-
Transmission and decorrelation methods for detecting rare variants using sequencing data from related individuals
por: Darst, Burcu F., et al.
Publicado: (2016) -
dRFEtools: dynamic recursive feature elimination for omics
por: Benjamin, Kynon J M, et al.
Publicado: (2023) -
Data mining and machine learning approaches for the integration of genome-wide association and methylation data: methodology and main conclusions from GAW20
por: Darst, Burcu, et al.
Publicado: (2018) -
Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data
por: Yousef, Malik, et al.
Publicado: (2007) -
Recursive Feature Selection with Significant Variables of Support Vectors
por: Tsai, Chen-An, et al.
Publicado: (2012)