Cargando…
Using penalized regression to predict phenotype from SNP data
BACKGROUND: In a typical genome-enabled prediction problem there are many more predictor variables than response variables. This prohibits the application of multiple linear regression, because the unique ordinary least squares estimators of the regression coefficients are not defined. To overcome t...
Autores principales: | Cherlin, Svetlana, Howey, Richard A. J., Cordell, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157193/ https://www.ncbi.nlm.nih.gov/pubmed/30275888 http://dx.doi.org/10.1186/s12919-018-0149-2 |
Ejemplares similares
-
Analysis of Genetic Analysis Workshop 18 data with gene-based penalized regression
por: Ayers, Kristin L, et al.
Publicado: (2014) -
Analysis of North American Rheumatoid Arthritis Consortium data using a penalized logistic regression approach
por: Croiseau, Pascal, et al.
Publicado: (2009) -
Penalized-regression-based multimarker genotype analysis of Genetic Analysis Workshop 17 data
por: Ayers, Kristin L, et al.
Publicado: (2011) -
Application of Bayesian networks to GAW20 genetic and blood lipid data
por: Howey, Richard A. J., et al.
Publicado: (2018) -
Accounting for relatedness in family-based association studies: application to Genetic Analysis Workshop 18 data
por: Eu-ahsunthornwattana, Jakris, et al.
Publicado: (2014)