Cargando…
Indirect effect inference and application to GAW20 data
BACKGROUND: Association studies using a single type of omics data have been successful in identifying disease-associated genetic markers, but the underlying mechanisms are unaddressed. To provide a possible explanation of how these genetic factors affect the disease phenotype, integration of multipl...
Autores principales: | Li, Liming, Wang, Chan, Lu, Tianyuan, Lin, Shili, Hu, Yue-Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157197/ https://www.ncbi.nlm.nih.gov/pubmed/30255768 http://dx.doi.org/10.1186/s12863-018-0638-3 |
Ejemplares similares
-
Application of Bayesian networks to GAW20 genetic and blood lipid data
por: Howey, Richard A. J., et al.
Publicado: (2018) -
Evidence of batch effects masking treatment effect in GAW20 methylation data
por: Canty, Angelo J., et al.
Publicado: (2018) -
The challenge of detecting genotype-by-methylation interaction: GAW20
por: de Andrade, Mariza, et al.
Publicado: (2018) -
Methods for detecting methylation by SNP interaction in GAW20 simulation
por: Daw, E. Warwick, et al.
Publicado: (2018) -
Causal modeling in a multi-omic setting: insights from GAW20
por: Auerbach, Jonathan, et al.
Publicado: (2018)