Cargando…
Sample Entropy on Multidistance Signal Level Difference for Epileptic EEG Classification
Epilepsy is a disorder of the brain's nerves as a result of excessive brain cell activity. It is generally characterized by the recurrent unprovoked seizures. This neurological abnormality can be detected and evaluated using Electroencephalogram (EEG) signal. Many algorithms have been applied t...
Autores principales: | Rizal, Achmad, Hadiyoso, Sugondo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157202/ https://www.ncbi.nlm.nih.gov/pubmed/30279635 http://dx.doi.org/10.1155/2018/8463256 |
Ejemplares similares
-
Empirical Mode Decomposition and Hilbert Spectrum for Abnormality Detection in Normal and Abnormal Walking Transitions
por: Erfianto, Bayu, et al.
Publicado: (2023) -
Multi Modal Feature Extraction for Classification of Vascular Dementia in Post-Stroke Patients Based on EEG Signal
por: Hadiyoso, Sugondo, et al.
Publicado: (2023) -
Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy
por: Li, Peng, et al.
Publicado: (2016) -
EEG-Based Spectral Dynamic in Characterization of Poststroke Patients with Cognitive Impairment for Early Detection of Vascular Dementia
por: Hadiyoso, Sugondo, et al.
Publicado: (2022) -
A Novel Texture Extraction-Based Compressive Sensing for Lung Cancer Classification
por: Irawati, Indrarini Dyah, et al.
Publicado: (2022)