Cargando…

Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach

BACKGROUND: DNA methylation is an epigenetic mechanism that has been proposed as a possible link between genetic and environmental determinants of disease. Prior studies reported robust associations between the methylation of specific cytosine-phosphate-guanine (CpG) sites and plasma lipids, namely...

Descripción completa

Detalles Bibliográficos
Autores principales: Sayols-Baixeras, Sergi, Tiwari, Hemant K., Aslibekyan, Stella W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157243/
https://www.ncbi.nlm.nih.gov/pubmed/30275879
http://dx.doi.org/10.1186/s12919-018-0119-8
_version_ 1783358242617819136
author Sayols-Baixeras, Sergi
Tiwari, Hemant K.
Aslibekyan, Stella W.
author_facet Sayols-Baixeras, Sergi
Tiwari, Hemant K.
Aslibekyan, Stella W.
author_sort Sayols-Baixeras, Sergi
collection PubMed
description BACKGROUND: DNA methylation is an epigenetic mechanism that has been proposed as a possible link between genetic and environmental determinants of disease. Prior studies reported robust associations between the methylation of specific cytosine-phosphate-guanine (CpG) sites and plasma lipids, namely triglycerides (TGs) and high-density lipoprotein cholesterol (HDL-C). However, the causality of the observed association remains elusive, hampered by weak instrumental variables for methylation status. AIM: We present a novel application of the elastic net approach to implement a bidirectional Mendelian randomization approach to inferring causal relationships between candidate CpGs and plasma lipids in GAW20 data. METHODS: We used DNA methylation, TGs, and HDL-C measured during the visit 2. Based on prior findings, we selected 5 methylation markers (cg00574958, cg07504977, cg06690548, cg19693031, and cg03717755) related to TGs, 2 markers (cg09572125 and cg02650017) related to HDL-C, and 2 markers (cg06500161 and cg11024682) related to both traits. We implemented an elastic net approach to improve the selection of the genetic instrument for the methylation markers, followed by bidirectional Mendelian randomization 2-stage least-squares regression. RESULTS: We observed causal effects of blood fasting TGs on the methylation levels of cg00574958 (CPT1A) and cg06690548 (SLC7A11). For cg00574958, our findings were also consistent with the reverse direction of association, that is, from CPT1A methylation to TGs. CONCLUSIONS: Current evidence does not rule out either direction of association between the methylation of the cg00574958 CPT1A locus and plasma TGs, highlighting the complexity of lipid homeostasis. We also demonstrated a novel approach to improve instrument selection in DNA methylation studies.
format Online
Article
Text
id pubmed-6157243
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-61572432018-10-01 Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach Sayols-Baixeras, Sergi Tiwari, Hemant K. Aslibekyan, Stella W. BMC Proc Proceedings BACKGROUND: DNA methylation is an epigenetic mechanism that has been proposed as a possible link between genetic and environmental determinants of disease. Prior studies reported robust associations between the methylation of specific cytosine-phosphate-guanine (CpG) sites and plasma lipids, namely triglycerides (TGs) and high-density lipoprotein cholesterol (HDL-C). However, the causality of the observed association remains elusive, hampered by weak instrumental variables for methylation status. AIM: We present a novel application of the elastic net approach to implement a bidirectional Mendelian randomization approach to inferring causal relationships between candidate CpGs and plasma lipids in GAW20 data. METHODS: We used DNA methylation, TGs, and HDL-C measured during the visit 2. Based on prior findings, we selected 5 methylation markers (cg00574958, cg07504977, cg06690548, cg19693031, and cg03717755) related to TGs, 2 markers (cg09572125 and cg02650017) related to HDL-C, and 2 markers (cg06500161 and cg11024682) related to both traits. We implemented an elastic net approach to improve the selection of the genetic instrument for the methylation markers, followed by bidirectional Mendelian randomization 2-stage least-squares regression. RESULTS: We observed causal effects of blood fasting TGs on the methylation levels of cg00574958 (CPT1A) and cg06690548 (SLC7A11). For cg00574958, our findings were also consistent with the reverse direction of association, that is, from CPT1A methylation to TGs. CONCLUSIONS: Current evidence does not rule out either direction of association between the methylation of the cg00574958 CPT1A locus and plasma TGs, highlighting the complexity of lipid homeostasis. We also demonstrated a novel approach to improve instrument selection in DNA methylation studies. BioMed Central 2018-09-17 /pmc/articles/PMC6157243/ /pubmed/30275879 http://dx.doi.org/10.1186/s12919-018-0119-8 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Proceedings
Sayols-Baixeras, Sergi
Tiwari, Hemant K.
Aslibekyan, Stella W.
Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach
title Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach
title_full Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach
title_fullStr Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach
title_full_unstemmed Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach
title_short Disentangling associations between DNA methylation and blood lipids: a Mendelian randomization approach
title_sort disentangling associations between dna methylation and blood lipids: a mendelian randomization approach
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157243/
https://www.ncbi.nlm.nih.gov/pubmed/30275879
http://dx.doi.org/10.1186/s12919-018-0119-8
work_keys_str_mv AT sayolsbaixerassergi disentanglingassociationsbetweendnamethylationandbloodlipidsamendelianrandomizationapproach
AT tiwarihemantk disentanglingassociationsbetweendnamethylationandbloodlipidsamendelianrandomizationapproach
AT aslibekyanstellaw disentanglingassociationsbetweendnamethylationandbloodlipidsamendelianrandomizationapproach